AI Article Synopsis

  • The study investigates the relationship between working memory (WM) and visual attention, noting that both functions often engage overlapping brain regions, particularly the parietal cortex.
  • Using fMRI and TMS, researchers found that the left and right parietal cortices contribute differently to WM and attention, with right-parietal TMS affecting visual search behavior based on WM load.
  • The results suggest that while the left and right parietal areas have distinct roles, they also interact, highlighting the complexity of how WM and attentional demands coexist and impact performance.

Article Abstract

To achieve our moment-to-moment goals, we must often keep information temporarily in mind. Yet, this working memory (WM) may compete with demands for our attention in the environment. Attentional and WM functions are thought to operate by similar underlying principles, and they often engage overlapping fronto-parietal brain regions. In a recent fMRI study, bilateral parietal cortex BOLD activity displayed an interaction between WM and visual attention dual-task demands. However, prior studies also suggest that left and right parietal cortices make unique contributions to WM and attentional functions. Moreover, behavioral performance often shows no interaction between concurrent WM and attentional demands. Thus, the scope of reciprocity between WM and attentional functions, as well as the specific contribution that parietal cortex makes to these functions, remain unresolved. Here, we took a causal approach, targeting brain regions that are implicated in shared processing between WM and visual attention, to better characterize how those regions contribute to behavior. We first examined whether behavioral indices of WM and visual search differentially correlate with left and right parietal dual-task BOLD responses. Then, we delivered TMS over fMRI-guided left and right parietal sites during dual-task WM-visual search performance. Only right-parietal TMS influenced visual search behavior, but the stimulation either helped or harmed search depending on the current WM load. Therefore, whereas the left and right parietal contributions were distinct here, attentional and WM functions were codependent. Right parietal cortex seems to hold a privileged role in visual search behavior, consistent with prior findings, but the current results reveal that behavior may be sensitive to the interaction between visual search and WM load only when normal parietal activity is perturbed. The parietal response to heightened WM and attentional demands may therefore serve to protect against dual-task interference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9422895PMC
http://dx.doi.org/10.1162/jocn_a_01740DOI Listing

Publication Analysis

Top Keywords

attentional functions
16
left parietal
16
visual search
16
parietal cortex
12
parietal
9
parietal contributions
8
working memory
8
brain regions
8
interaction visual
8
visual attention
8

Similar Publications

Benchmark of Density Functional Theory in the Prediction of C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation.

J Chem Theory Comput

January 2025

Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.

Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set.

View Article and Find Full Text PDF

Objective: Older adults have an increased risk of developing persistent cognitive complaints after mild traumatic brain injury (mTBI). Yet, studies exploring which factors protect older adults with mTBI from developing such complaints are rare. It has been suggested that one such factor may be cognitive reserve (CR), but it is unknown how CR influences cognition in this patient category.

View Article and Find Full Text PDF

The norepinephrine transporter (NET) is a key regulator of noradrenergic neurotransmission and homeostasis, regulating the norepinephrine levels in the brain and peripheral tissues. hNET is a major target in neuropsychiatric disorders such as major depressive disorder, autonomic dysfunction, and attention deficit hyperactivity disorder (ADHD). The human norepinephrine transporter gene (, ) contains 504 missense single nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

Importance: Fall risk and cognitive impairment are prevalent and burdensome in Parkinson disease (PD), requiring efficacious, well-tolerated treatment.

Objective: To evaluate the safety and efficacy of TAK-071, a muscarinic acetylcholine M1 positive allosteric modulator, in participants with PD, increased fall risk, and cognitive impairment.

Design, Setting, And Participants: This phase 2 randomized double-blind placebo-controlled crossover clinical trial was conducted from October 21, 2020, to February 27, 2023, at 19 sites in the US.

View Article and Find Full Text PDF

Halide perovskites have attracted recent attention as thermoelectric materials due to their low thermal conductivity combined with good charge transport characteristics. The tin halide perovskites hold the highest within metal halide perovskites and offer lower toxicity than lead-containing perovskites that are well-known for photovoltaics. In this study, we partially substitute Sn (II) with Ge (II) to form mixed metal CsSnGeI perovskite thin films that have substantially improved stability, remaining in the black orthorhombic phase after hours of ambient air exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!