Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: The recent introduction of antivirals for the treatment of the hepatitis C virus opens new frontiers but also poses a significant burden on public health systems. This paper presents a simulation study in which model predictive control (MPC) is proposed for optimizing the therapy aiming to obtain a reduction of the costs of therapy, while maintaining the best pharmacological control of the infection.
Methods: A dynamic model describing the evolution of hepatitis C is deployed as internal model for MPC implementation, using nominal values of parameters. Different closed-loop simulations are presented both in nominal and in mismatch conditions. In addition, a more easily implementable treatment is proposed, which is based on a discrete dosage approach, where days on/off therapy are considered instead of continuous therapy modulation.
Results: Results show that therapy modulation allows one to achieve the same infection evolution as with full therapy, with a reduction of drug consumption between 10% and 40%. The alternative discrete dosage approach shows similar results achieved with therapy modulation, both in terms of therapy effectiveness and drug consumption reduction.
Conclusions: The proposed model predictive control therapy optimization strategies appear to be effective, implementable and robust to model errors. It therefore represents a potentially useful approach to alleviate the burden of HCV therapy cost on national health systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2021.106383 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!