Aerobic composting is a promising alternative for the recycling of rice straw (RS), and an applicable nitrogen source is necessary to improve the process. The aim of this study was to compare the performance and microbial community dynamics of RS composting using urea or protein hydrolysate from leather waste (PHL) as a nitrogen source. Results showed that PHL addition achieved a faster temperature increase rate at start-up (1.85 ℃·h vs 1.07 ℃·h), higher volatile solid degradation efficiency (48.04% vs 46.98%), and greater germination indices (111.72% vs 89.87%) in the end products, as compared to urea. The major bacterial phyla included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in both composting processes. Although the bacterial communities in both processes succeeded in a similar pattern according to different composting phases, PHL addition accelerated the succession rate of the microbial community. Co-occurrence network analysis revealed that bacterial community composition was strongly correlated with physicochemical properties such as dissolved organic carbon (DOC), NH, pH, temperature, and total nitrogen (TN) content. These results proved the potential of using PHL as a nitrogen source to improve the RS composting process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2021.08.026 | DOI Listing |
Prep Biochem Biotechnol
January 2025
Environmental Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India.
The study employed batch shake flasks to evaluate the impact of various nitrogen sources, phosphate levels, and sodium acetate (Na-acetate) on the growth and metabolite production. Adding Na-acetate to the medium resulted in significant improvements in critical metabolites. In shake flask experiments, this led to a cell dry weight (CDW) of 1.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.
ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.
View Article and Find Full Text PDFRSC Adv
January 2025
Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
Developing high-efficiency, cost-effective, and long-term stable nanostructured catalysts for electrocatalytic water splitting remains one of the most challenging aspects of hydrogen fuel production. Urea electrooxidation reaction (UOR) can produce hydrogen energy from nitrogen-rich wastewater, making it a more sustainable and cheaper source of hydrogen. In this study, we have developed Ni/NiS hybrid structures with cauliflower-like morphology on carbon paper electrodes through the application of dimethylsulfoxide solvents.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Engineering Technology Research Center of Key Preparation Technology of Biomedical Polymer Materials Changde 415000 China.
Indole-fused pyridines are an important motif in pharmaceuticals and functional molecules. A visible-light induced Ru(bpy)Cl·6HO catalyzed radical cascade sulfonylation/cyclization strategy for the synthesis of indole-fused pyridine derivatives was developed. Diverse indole-fused pyridines bearing different functional groups were obtained in moderate to good yields.
View Article and Find Full Text PDFJ Am Water Resour Assoc
March 2024
University of Maryland Center for Environmental Science, Annapolis, Maryland, USA.
Many agricultural watersheds rely on the voluntary use of management practices (MPs) to reduce nonpoint source nutrient and sediment loads; however, the water-quality effects of MPs are uncertain. We interpreted water-quality responses from as early as 1985 through 2020 in three agricultural Chesapeake Bay watersheds that were prioritized for MP implementation, namely, the Smith Creek (Virginia), Upper Chester River (Maryland), and Conewago Creek (Pennsylvania) watersheds. We synthesized patterns in MPs, climate, land use, and nutrient inputs to better understand factors affecting nutrient and sediment loads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!