Over the years, conventional wastewater treatment processes have achieved to some extent in treating effluents for discharge pints. Development in wastewater treatment processes is essential to make treated wastewater reusable for industrial, agricultural, and domestic purposes. Membrane technology has emerged as an ideal technology for treating wastewater from different wastewater streams. Membrane technology is one of the most up-to-date advancements discovered to be successful in fundamentally lessening impurities to desired levels. In spite of having certain impediments, membrane bioreactors (MBRs) for biological wastewater treatment provide many advantages over conventional treatment. This review article covers all the aspects of membrane technology that are widely used in wastewater treatment process such as the principle of membrane technology, the classification of membrane technology processes in accordance to pressure, concentration, electrical and thermal-driven processes, its application in different industries, advantages, disadvantages and the future prospective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.202100259 | DOI Listing |
Transl Vis Sci Technol
January 2025
New England Eye Center, Tufts Medical Center, Boston, MA, USA.
Purpose: To evaluate visibility of a sub-band posterior to the external limiting membrane (ELM) and assess its age-associated variation.
Methods: In a retrospective cross-sectional study, normal eyes were imaged using a high-resolution spectral-domain optical coherence tomography (SD-OCT) prototype (2.7-µm axial resolution).
Arch Toxicol
January 2025
Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker and linker ─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Methicillin-resistant (MRSA) is a refractory pneumonia-causing pathogen due to the antibiotic resistance and the characteristics of persisting inside its host cell. Lysostaphin is a typical bacteriolytic enzyme for degrading bacterial cell walls via hydrolysis of pentaglycine cross-links, showing potential to combat multidrug-resistant bacteria. However, there are still grand challenges for native lysostaphin because of its poor shelf stability and limited bioavailability.
View Article and Find Full Text PDFChempluschem
January 2025
Kaiserslautern University of Technology: Rheinland-Pfalzische Technische Universitat Kaiserslautern-Landau, Chemistry, 67663, Kaiserslautern, GERMANY.
We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!