A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An In Vitro Hand Simulator for Simultaneous Control of Hand and Wrist Movements. | LitMetric

A human hand is a complex biomechanical system, in which bones, ligaments, and musculotendon units dynamically interact to produce seemingly simple motions. A new physiological hand simulator has been developed, in which electromechanical actuators apply load to the tendons of extrinsic hand and wrist muscles to recreate movements in cadaveric specimens in a biofidelic way. This novel simulator simultaneously and independently controls the movements of the wrist (flexion/extension and radio-ulnar deviation) and flexion/extension of the fingers and thumb. Control of these four degrees of freedom (DOF) is made possible by actuating eleven extrinsic muscles of the hand. The coupled dynamics of the wrist, fingers, and thumb, and the over-actuated nature of the human musculoskeletal system make feedback control of hand movements challenging. Two control algorithms were developed and tested. The optimal controller relies on an optimization algorithm to calculate the required tendon tensions using the collective error in all DOFs, and the action-based controller loads the tendons solely based on their actions on the controlled DOFs (e.g., activating all flexors if a flexing moment is required). Both controllers resulted in hand movements with small errors from the reference trajectories ( ); however, the optimal controller achieved this with 16% lower total force. Owing to its simpler structure, the action-based controller was extended to enable feedback control of grip force. This simulator has been shown to be a highly repeatable tool (  N and variations in force and kinematics, respectively) for in vitro analyses of human hand biomechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2021.3110893DOI Listing

Publication Analysis

Top Keywords

hand simulator
8
hand
8
control hand
8
hand wrist
8
human hand
8
fingers thumb
8
feedback control
8
hand movements
8
optimal controller
8
action-based controller
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!