Rift Valley fever virus (RVFV) is an arbovirus found throughout Africa. It causes disease that is typically mild and self-limiting; however, some infected individuals experience severe manifestations, including hepatitis, encephalitis, or even death. Reports of RVFV encephalitis are notable among immunosuppressed individuals, suggesting a role for adaptive immunity in preventing this severe complication. This phenomenon has been modeled in C57BL/6 mice depleted of CD4 T cells prior to infection with DelNSs RVFV (RVFV containing a deletion of nonstructural protein NSs), resulting in late-onset encephalitis accompanied by high levels of viral RNA in the brain in 30% of animals. In this study, we sought to define the specific type(s) of CD4 T cells that mediate protection from RVFV encephalitis. The viral epitopes targeted by CD4 and CD8 T cells were defined in C57BL/6 mice, and tetramers for both CD4 and CD8 T cells were generated. RVFV-specific CD8 T cells were expanded and of a cytotoxic and proliferating phenotype in the liver following infection. RVFV-specific CD4 T cells were identified in the liver and spleen following infection and phenotyped as largely Th1 or Tfh subtypes. Knockout mice lacking various aspects of pathways important in Th1 and Tfh development and function were used to demonstrate that T-bet, CD40, CD40L, and major histocompatibility complex class II (MHC-II) mediated protection from RVFV encephalitis, while gamma interferon (IFN-γ) and interleukin-12 (IL-12) were dispensable. Virus-specific antibody responses correlated with protection from encephalitis in all mouse strains, suggesting that Tfh/B cell interactions modulate clinical outcome in this model. The prevention of RVFV encephalitis requires intact adaptive immunity. In this study, we developed reagents to detect RVFV-specific T cells and provide evidence for Tfh cells and CD40/CD40L interactions as critical mediators of this protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577384PMC
http://dx.doi.org/10.1128/JVI.01506-21DOI Listing

Publication Analysis

Top Keywords

rvfv encephalitis
16
cd4 cells
12
cd8 cells
12
cells
9
rift valley
8
valley fever
8
cd40/cd40l interactions
8
encephalitis
8
adaptive immunity
8
c57bl/6 mice
8

Similar Publications

Objectives: Arboviruses pose a significant global health challenge. This study investigated the seroprevalence of major human arboviral infections, including yellow fever (YFV), dengue (DENV), Crimean-Congo hemorrhagic fever (CCHF), Rift Valley fever (RVF), West Nile virus (WNV), and chikungunya (CHIK), in Darfur region from September to December 2018. ELISA-IgM was used to detect antibodies.

View Article and Find Full Text PDF

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that causes high fetal and neonatal mortality rates in ruminants and sometimes severe to fatal complications like encephalitis and hemorrhagic fever in humans. There is no licensed RVF vaccine for human use while approved livestock vaccines have suboptimal safety or efficacy. We designed self-amplifying RNA (saRNA) RVF vaccines and assessed their humoral immunogenicity in mice.

View Article and Find Full Text PDF

Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development.

View Article and Find Full Text PDF

Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Middle East. Live-attenuated RVF vaccines have been studied for both veterinary and human use due to their strong immunogenicity and cost-effective manufacturing. The live-attenuated MP-12 vaccine has been conditionally approved for veterinary use in the U.

View Article and Find Full Text PDF

Laboratory Animal Models for Rift Valley Fever Virus Disease.

Methods Mol Biol

July 2024

University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA.

Rift Valley fever virus (RVFV) is an arboviral pathogen of clinical and agricultural relevance. The ongoing development of targeted RVFV prophylactics and therapeutics is overwhelmingly dependent on animal models due to both natural, that is, sporadic outbreaks, and structural, for example, underresourcing of endemic regions, limitations in accessing human patient samples and cohorts. Elucidating mechanisms of viral pathogenesis and testing therapeutics is further complicated by the diverse manifestations of RVFV disease and the heterogeneity of the host response to infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!