Alginate-Based Amphiphilic Block Copolymers as a Drug Codelivery Platform.

Nano Lett

Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.

Published: September 2021

Structured nanoassemblies are biomimetic structures that are enabling applications from nanomedicine to catalysis. One approach to achieve these spatially organized architectures is utilizing amphiphilic diblock copolymers with one or two macromolecular backbones that self-assemble in solution. To date, the impact of alternating backbone architectures on self-assembly and drug delivery is still an area of active research limited by the strategies used to synthesize these multiblock polymers. Here, we report self-assembling ABC-type alginate-based triblock copolymers with the backbones of three distinct biomaterials utilizing a facile conjugation approach. This "polymer mosaic" was synthesized by the covalent attachment of alginate with a PLA/PEG diblock copolymer. The combination of alginate, PEG, and PLA domains resulted in an amphiphilic copolymer that self-assembles into nanoparticles with a unique morphology of alginate domain compartmentalization. These particles serve as a versatile platform for co-encapsulation of hydrophilic and hydrophobic small molecules, their spatiotemporal release, and show potential as a drug delivery system for combination therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8768502PMC
http://dx.doi.org/10.1021/acs.nanolett.1c01525DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
alginate-based amphiphilic
4
amphiphilic block
4
block copolymers
4
copolymers drug
4
drug codelivery
4
codelivery platform
4
platform structured
4
structured nanoassemblies
4
nanoassemblies biomimetic
4

Similar Publications

Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.

View Article and Find Full Text PDF

Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!