In this work, the interlayer coupling dependent lithium intercalation induced phase transition in bilayer MoS (BL-MoS) was investigated using an atomic-resolution annual dark-field scanning transmission electron microscope (ADF-STEM). It was revealed that the lithiation induced H → T' phase transition in BL-MoS strongly depended on the interlayer twist angle; i.e., the H → T' phase transition occurred in well-stacked H phase BL-MoS (with a twist angle of θ = 0°) but not for θ ≠ 0° BL-MoS. The lithiated BL-MoS appeared in homophase stacking, either T'/T' or H/H (locally, no phase transformation) stacking, without any heterophase stacking such as H/T' or T'/H observed. This finding indicated the H → T' phase transition occurred via a domain-by-domain mode rather than layer-by-layer. Up to 15 types of stacking orders were experimentally identified locally in lithiated bilayer T'-MoS, and the formation mechanism was attributed to the discrete interlayer translation with a unit step of (/6, /6) (, = 0, 1, 2, 3), where and were the primitive lattice vectors of T'-MoS. Our experimental results were further corroborated by density functional theory (DFT) calculations, where the occurrence of different stacking orders can be quantitatively correlated with the variation of intercalated lithium contents into the BL-MoS. The present study aids in the understanding of the phase transition mechanisms in atomically thin 2D transition metal dichalcogenides (TMDCs) and will also shed light on the precisely controlled phase engineering of 2D materials for memory applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c05332 | DOI Listing |
Inorg Chem
January 2025
High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Trombay 400085, India.
Determining the dissociation mechanism of perchlorate materials remains a top priority to address sustainability, handling, processing, and synthesis issues of new and existing high-energy density materials vital to many industrial processes. We determined the dissociation mechanism of diglycine perchlorate (DGPCl) using vibrational spectroscopy, which unveiled the formation of ammonium perchlorate (AP) and carbon at high temperatures. Our studies establish that DGPCl shows multiple phase transitions upon heating.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, No.8 South Third Street, Zhongguancun, Beijing, 100190, CHINA.
We systematically investigate the magnetization and thermodynamic responses associated with antiferromagnetic (AFM) transitions in single crystals of the magnetic semiconductor Eu3InAs3. The linear thermal expansion measurements around the AFM transition temperatures, TN1 and TN2, indicate an expansion along the a axis and contraction along the b and c axes. The calculated ∆V/V(T) shows a continuous change at TN, indicating a second-order magnetic phase transition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, Carrer dels Til·lers, s/n, Bellaterra, 08193 Barcelona, Spain.
The influence of the film/substrate interface and the role of film thickness on the structural transition temperature for thin films of the asymmetric BTBT derivative 7-decyl-2-phenyl[1]benzothieno[3,2-][1]-benzothiophene (Ph-BTBT-10) have been addressed by using Kelvin probe force microscopy (KPFM) and synchrotron grazing incidence wide angle X-ray scattering (GIWAXS). Our data strongly suggest that the structural transformation from a single-layer phase to the thermodynamically stable bilayer structure develops from the bottom of the film to its surface. Contrary to observations in other organic semiconductor films, notably, the thinner the Ph-BTBT-10 film, the lower is the transition temperature.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States.
Whereas single crystals of organic compounds that respond to heat or light have been reported and studied in detail, studies on crystalline organic compounds that elicit an extreme mechanical response are relatively rare in the chemical literature. A tetrafluoro(aryl)sulfanylated bicyclopentane synthesized in our laboratory was discovered to exhibit such behavior; i.e.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, United States.
Two-dimensional molybdenum ditelluride (2D MoTe) is an interesting material for artificial synapses due to its unique electronic properties and phase tunability in different polymorphs 2H/1T'. However, the growth of stable and large-scale 2D MoTe on a CMOS-compatible Si/SiO substrate remains challenging because of the high growth temperature and impurity-involved transfer process. We developed a large-scale MoTe film on a Si/SiO wafer by simple sputtering followed by lithium-ion intercalation and applied it to artificial synaptic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!