Using C pulsed labeling technique, we examined the biomass and carbon accumulation of different organs as well as the distribution characteristics of C assimilate of 6-year-old Korla fragrant pear trees under three nitrogen application levels, ., 150, 300, and 450 kg N·hm (marked as N, N, and N, respectively). Results showed that the biomass, carbon accumulation, C fixation and leaf assimilation capacity of the whole pear tree increased while root to shoot ratio decreased with increasing nitrogen application. Both biomass and carbon accumulation amount of reproductive organs (., fruits) were the highest under N treatment. The C content and distribution rate of each organ changed dynamically along with increasing nitrogen application. At the new shoot growing stage, leaves and roots had stronger competitive abilities for photosynthate, with C distribution rates being the highest under N treatment. During fruit swelling and mature stages, leaves and fruits were more competitive, with C content and distribution rate in leaves being the highest under N treatment and those in fruits being the highest under N treatment. According to the absorption and distribution characteristics of carbon assimilate across organs under the three nitrogen application levels, the optimal nitrogen application level for achieving high fruit yield in the 6-year-old Korla fragrant pear tree orchard is recommended as 300 kg·hm .

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202008.026DOI Listing

Publication Analysis

Top Keywords

nitrogen application
24
highest treatment
16
korla fragrant
12
fragrant pear
12
biomass carbon
12
carbon accumulation
12
application level
8
photosynthate distribution
8
distribution characteristics
8
6-year-old korla
8

Similar Publications

Unlabelled: Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange.

View Article and Find Full Text PDF

Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.

View Article and Find Full Text PDF

Nitrocellulose (NC)-based propellants have played a pivotal role in the development of energetic materials for both military and civilian applications. This review offers a comprehensive exploration of NC-based propellants, tracing their evolution from their historical origins as smokeless gunpowder to modern advancements. It discusses the chemical composition and classifications of NC propellants, along with continuous efforts to refine smokeless powder formulations through studies on smoke formation, residues, and additives.

View Article and Find Full Text PDF

Utilization of refuse-derived fuel in industrial applications: Insights from Uttar Pradesh, India.

Heliyon

January 2025

Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.

View Article and Find Full Text PDF

Recent advances in biotechnology have brought novel solutions to both metabolic diseases and sustainable agriculture. This Patent Highlight examines innovation from four recent patents focusing on the genetic modification of microbes for nitrogen and carbon fixation and the development of pharmaceutical compounds to target critical metabolic pathways. These breakthroughs have potential applications in fields ranging from industrial biotechnology and agriculture to cancer therapy and metabolic disease treatment, providing new strategies for addressing global health and environmental challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!