Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrogen (N) and phosphorus (P) are two common mineral elements constraining plant growth. Nutrients in aquatic macrophytes are mainly absorbed from water and sediments, and thus elemental composition in plant tissues can reflect the nutritional status in freshwater ecosystems. Kaidu River is an important river flowing through the alpine meadows, deserts, and desert oases in Xinjiang. Herein, samples of aquatic macrophytes, water, and sediments across the Kaidu River were collected. Foliar stoichiometric characteristics of N and P in plants were examined among life forms and phylogeny. The differences and correlations among the stoichiometric characteristics of plants, water bodies, and sediments in the upstream and downstream and across different land use types were elaborated. Results showed that the means of leaf N and P concentrations and N/P mass ratio were 24.9 mg·g, 2.49 mg·g, and 12.6, respectively. There were significant differences in the leaf N and P stoichiometry among various life forms. Specifically, leaf N and P concentrations in submerged species were significantly higher than that in floating-leaved species and emergent species. The N/P of floating-leaved species was 19.2 and significantly higher than that in other two life-forms, indicating that their growth might be limited by P. Leaf N and P concentrations were higher in the upstream than in the downstream. Nitrogen contents in water and sediment were the higher in the upstream of the river. Compared with the river reaches in farming areas, the higher N and P concentrations of aquatic macrophytes in the grassland regions might be related to the higher contents of organic matter in grassland soils and of animal slurries from flocks and herds, suggesting that grazing exerted larger impact on the stoichiometric characteristics of the Kaidu River ecosystem. Our findings highlighted that overgrazing might accelerate the deterioration of water quality in the upstream of the Kaidu River, disturb the balance of N and P in the aquatic ecosystem, and potentially influence the biogeochemical cycling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202006.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!