A Titanium and Tantalum Phosphate LiNaTiTa P O with An Open Framework hosting Li and Na Ions.

Chemistry

Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Published: November 2021

Herein, we report a detailed structural, electric, thermal and optical analysis of a titanium and tantalum phosphate LiNaTiTa P O . The title compound is comprised of typical ReO -type layers constituted by corner-sharing TiO and TaO octahedra, bridged by PO tetrahedra, and the structure is closely related to monophosphate niobium bronzes. The existence of pentagonal tunnels, hosting the Li and Na ions, endows LiNaTiTa P O a moderate ion transportation behavior (4.67×10  S/cm at 823 K). In addition, the successful substitution of Nb for Ta in LiNaTiTa P O results in the optical absorption red-shift towards visible range with a narrowing band gap, which may provide a route of isomorphic replacement to band engineering for photo-catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202102533DOI Listing

Publication Analysis

Top Keywords

titanium tantalum
8
tantalum phosphate
8
phosphate linatita
8
hosting ions
8
linatita
4
linatita open
4
open framework
4
framework hosting
4
ions report
4
report detailed
4

Similar Publications

Metallic biomaterials are extensively used in orthopedics and dentistry, either as implants or coatings. In both cases, metal ions come into contact with surrounding tissues causing a particular cell response. Here, we present a biofabricated tissue model, consisting of a hydrogel reinforced with a melt electrowritten mesh, to study the effects of bound and released metal ions on surrounding cells embedded in a hydrogel matrix.

View Article and Find Full Text PDF

Integration of Through-Sapphire Substrate Machining with Superconducting Quantum Processors.

Adv Mater

January 2025

Oxford Quantum Circuits, Thames Valley Science Park, Shinfield, Reading, RG2 9LH, UK.

A sapphire machining process integrated with intermediate-scale quantum processors is demonstrated. The process allows through-substrate electrical connections, necessary for low-frequency mode-mitigation, as well as signal-routing, which are vital as quantum computers scale in qubit number, and thus dimension. High-coherence qubits are required to build fault-tolerant quantum computers and so material choices are an important consideration when developing a qubit technology platform.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the antibacterial effects of tantalum-copper (Ta-Cu) coatings on titanium alloys to combat infections from orthopedic and dental implants.
  • The coatings were created with different copper percentages and subjected to various thermal treatments, with the TaCu-2 sample (∼10 wt% copper, annealed at 600 °C) showing the best antibacterial performance.
  • Optimizing the copper content and annealing temperature was found to be crucial in improving the antibacterial properties of these coatings, suggesting their potential for reducing implant-related infections.
View Article and Find Full Text PDF

Biocompatible TA4 and TC4ELI with excellent mechanical properties and corrosion resistance via multiple ECAP.

Biomed Mater

December 2024

State Key Laboratory of Nuclear Physics and Technology, Department of Technical Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China.

Titanium (Ti), characterized by its exceptional mechanical properties, commendable corrosion resistance and biocompatibility, has emerged as the principal functional materials for implants in biomedical and clinical applications. However, the Ti-6Al-4V (TC4ELI) alloy has cytotoxicity risks, whereas the strength of the existing industrially pure titanium TA4 is marginally inadequate and will significantly limit the scenarios of medical implants. Herein, we prepared ultrafine-grained industrial-grade pure titanium TA4 and titanium alloy TC4ELI via the equal channel angular pressing method, in which the TA4-1 sample has ultrahigh strength of 1.

View Article and Find Full Text PDF

Protection Materials on III-V Semiconductors for Photoelectrochemical CO Reduction.

J Phys Chem C Nanomater Interfaces

December 2024

Department of Physics, Technical University of Denmark, Fysikvej 307, 2800 Kongens Lyngby, Denmark.

Article Synopsis
  • * A specific structure with 150 nm TiO, 8 nm TaO, and 150 nm copper nanocubes showed a faradaic efficiency of 24% under certain conditions when integrated into a photoelectrochemical flow reactor.
  • * Directly attaching copper nanocubes to just the TiO layer led to hydrogen production instead of CO reduction, and further studies indicate that the loss of selectivity is related to small copper particle redeposition without changes in the TiO's
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!