The posterior root muscle response (PRM) is a monosynaptic reflex that is evoked by single pulse transcutaneous spinal cord stimulation (tSCS). The main aim of this work was to analyse how body weight loading influences PRM reflex threshold measured from several lower limb muscles in healthy participants. PRM reflex responses were evoked with 1-ms rectangular monophasic pulses applied at an interval of 6 s via a self-adhesive electrode (9 × 5 cm) at the T11-T12 vertebral level. Surface electromyographic activity of lower limb muscles was recorded during four different conditions, one in decubitus supine (DS) and the other three involving standing at 100%, 50%, and 0% body weight loading (BW). PRM threshold intensity, peak-to-peak amplitude, and latency for each muscle were analysed in different conditions study. PRM reflex threshold increased with body weight unloading compared with DS, and the largest change was observed between DS and 0% BW for the proximal muscles and between DS and 50% BW for distal muscles. Peak-to-peak amplitude analysis showed only a significant mean decrease of 34.6% (SD 10.4, p = 0.028) in TA and 53.6% (SD 15.1, p = 0.019) in GM muscles between DS and 50% BW. No significant differences were observed for PRM latency. This study has shown that sensorimotor networks can be activated with tSCS in various conditions of body weight unloading. Higher stimulus intensities are necessary to evoke reflex response during standing at 50% body weight loading. These results have practical implications for gait rehabilitation training programmes that include body weight support.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.15448 | DOI Listing |
Chin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
Lipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
BMC Nephrol
January 2025
Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.
View Article and Find Full Text PDFNat Med
January 2025
Data Science, Novo Nordisk A/S, Søborg, Denmark.
Obesity and type 2 diabetes are prevalent chronic diseases effectively managed by semaglutide. Here we studied the effects of semaglutide on the circulating proteome using baseline and end-of-treatment serum samples from two phase 3 trials in participants with overweight or obesity, with or without diabetes: STEP 1 (n = 1,311) and STEP 2 (n = 645). We identified evidence supporting broad effects of semaglutide, implicating processes related to body weight regulation, glycemic control, lipid metabolism and inflammatory pathways.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!