Anatomically Aligned Loading During Falls: Influence of Fall Protocol, Sex and Trochanteric Soft Tissue Thickness.

Ann Biomed Eng

Injury Biomechanics and Aging Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada.

Published: December 2021

Fall simulations provide insight into skin-surface impact dynamics but have focused on vertical force magnitude. Loading direction and location (relative to the femur) likely influence stress generation. The current study characterized peak impact vector magnitude, orientation, and center of pressure over the femur during falls, and the influence of biological sex and trochanteric soft tissue thickness (TSTT). Forty young adults completed fall simulations including a vertical pelvis release, as well as kneeling and squat releases, which incorporate lateral/rotational motion. Force magnitude and direction varied substantially across fall simulations. Kneeling and squat releases elicited 57.4 and 38.8% greater force than pelvis release respectively, with differences accentuated in males. With respect to the femoral shaft, kneeling release had the most medially and squat release the most distally directed loading vectors. Across all fall simulations, sex and TSTT influenced force magnitude and center of pressure. Force was 28.0% lower in females and was applied more distally than in males. Low-TSTT participants had 16.8% lower force, applied closer to the greater trochanter than high-TSTT participants. Observed differences in skin-surface impact dynamics likely interact with underlying femur morphology to influence stress generation. These data should serve as inputs to tissue-level computational models assessing fracture risk.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-021-02852-6DOI Listing

Publication Analysis

Top Keywords

fall simulations
16
force magnitude
12
falls influence
8
sex trochanteric
8
trochanteric soft
8
soft tissue
8
tissue thickness
8
skin-surface impact
8
impact dynamics
8
influence stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!