Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Field ionization (FI), field desorption (FD), and liquid injection field desorption/ionization (LIFDI) provide soft positive ionization of gaseous (FI) or condensed phase analytes (FD and LIFDI). In contrast to the well-established positive-ion mode, negative-ion FI or FD have remained rare exceptions. LIFDI provides sample deposition under inert conditions, i.e., the exclusion of atmospheric oxygen and water. Thus, negative-ion LIFDI could potentially be applied to highly sensitive anionic compounds like catalytically active transition metal complexes. This work explores the potential of negative-ion mode using modern mass spectrometers in combination with an LIFDI source and presents first results of the application of negative-ion LIFDI-MS. Experiments were performed on two orthogonal-acceleration time-of-flight (oaTOF) instruments, a JEOL AccuTOF GCx and a Waters Micromass Q-TOF Premier equipped with LIFDI sources from Linden CMS. The examples presented include four ionic liquids (ILs), i.e., N-butyl-3-methylpyridinium dicyanamide, 1-butyl-3-methylimidazolium tricyanomethide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate), 3-(trifluoromethyl)-phenol, dichloromethane, iodine, polyethylene glycol diacid, perfluorononanoic acid, anionic surfactants, a tetraphosphazene silanol-silanolate, and two bis(catecholato)silanes. Volatile samples were delivered as vapors via the sample transfer capillary of the LIFDI probe or via a reservoir inlet. Condensed phase samples were applied to the emitter as dilute solutions via the sample transfer capillary. The compounds either yielded ions corresponding to their intact anions, A, or the [M-H] species formed upon deprotonation. This study describes the instrumental setups and the operational parameters for robust operation along with a discussion of the negative-ion LIFDI spectra of a variety of compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551092 | PMC |
http://dx.doi.org/10.1007/s00216-021-03641-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!