Biosurfactant-based dispersants (BBDs) may be more effective, cost-efficient and environmentally friendly than dispersants currently used for oil spill response. An improved understanding of BBD performance is needed to advance their development and commercial use. In this study, the ability of four BBDs, i.e. sufactins, trehalose lipids, rhamnolipids and exmulsins, alone and as various combinations to disperse Arabian light crude oil and weathered Alaska North Slope crude oil was compared to a widely used commercial oil dispersant (Corexit 9500A). Surfactin and trehalose lipids, which have balanced surface activity/emulsification ability, showed dispersion efficacy comparable to Corexit 9500A. Rhamnolipids (primarily a surface-active agent) and exmulsins (primarily an emulsifier) when used alone had significantly lower efficacy. However, blends of these surfactants had excellent dispersion performance because of synergistic effects. Balanced surface activity and emulsification ability may be key to formulate effective BBDs. Of the BBDs evaluated, surfactins with an effective dispersant-to-oil ratio as low as 1:62.3 and trehalose lipids with high oil affinity, biodegradation rate, and low toxicity characteristics show the most promise for commercial development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126122 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA.
Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.
View Article and Find Full Text PDFPharmaceutics
January 2025
Pharmacy, Pharmaceutical Technology and Physico-Chemical Department, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.
View Article and Find Full Text PDFPharmaceutics
January 2025
Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia.
This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, ) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses.
View Article and Find Full Text PDFUnlabelled: Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!