Chlorophenols (CPs) are toxic contaminants that tend to accumulate in textile dyeing sludge and pose a threat to the environment through the disposal process. To comprehensively evaluate CPs in sludge, the characteristics and risks of CPs from five textile dyeing plants (TDPs) were investigated in this study. The total concentration of 19 CPs (Σ CPs) varied from 170.90 to 6290.30 ng g dry weight (dw), among which high-chlorine phenols accounted for the greatest proportion. The ecological screening level (ESL) of CPs was used to judge their pollution levels, while the risk quotient (RQ) value and dioxin conversion rate were used to analyze their potential risk. The results indicated that CPs may pose a moderate to high risk to the environment. The Fenton process was used to condition the hazardous sludge, and a higher content of CPs was found after conditioning. A lower rate of CP increase was achieved with a reagent dose of 180 mmol/L, HO:Fe = 1:1, pH of 3-4 and reaction time of 30 min. In summary, the work helps to address the general knowledge gap in the textile dyeing industry and provides a reference for further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125721 | DOI Listing |
Curr Med Chem
January 2025
School of Pharmacy, Changzhou University, Changzhou, 213164, China.
Curcumin is a natural plant pigment that has been widely used in food production, drug development, and textile engineering. Gaining a deep understanding of the biological activities of curcumin and obtaining high-purity curcumin are of vital importance for basic research and applications of curcumin. In this review, we summarize recent advances in curcumin, mainly focusing on the methods of extracting and purifying curcumin from turmeric as well as applications based on biological activity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China. Electronic address:
Comparing to the solvent-based and waterborne polyurethanes (PU), the solvent-free reactive PU (RPU) is prepared via in-situ polymerization and film-formation of isocyanate-capped prepolymers and macromolecular polyols in solvent-free system. Thus, the carbon emissions and environmental pollutions are significantly reduced. However, the rapid polymerization also challenges the well control of structure and properties, especially the ordered microstructures.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Textile Auxiliary and Ecological Dyeing Finishing, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
A simple and non-chemical binding nanofiber (-CD/PA) adsorbent was obtained by electrospinning a mixture of -cyclodextrin (-CD) and polyacrylate (PA). The cationic dyes in wastewater were removed by the host-guest inclusion complex of the -cyclodextrin and the electrostatic interaction between the polyacrylate and the dyes groups. The influence of the content of -cyclodextrin on the surface morphology and adsorption capacity of the nanofiber membrane was discussed, and the optimized adsorption capacity of nanofiber adsorption material was determined.
View Article and Find Full Text PDFMolecules
January 2025
CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, 13900 Biella, Italy.
Thanks to their unique physicochemical properties, ionic liquids (ILs) have moved from niche academic interest to critical components in various industrial applications. The textile industry, facing significant environmental and economic pressures, has begun to explore ILs as sustainable alternatives to traditional solvents and chemicals. This review summarizes research on the use of ILs in various textile processes, including dyeing, finishing, and fiber recycling, where their high thermal stability, tunable solubility, and low volatility are exploited to reduce resource consumption and environmental impact.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze, Italy.
The textile district of Prato (Italy) has developed a wastewater recycling system of considerable scale. The reclaimed wastewater is characterized by high levels of hardness (32 °F on average), which precludes its direct reuse in numerous wet textile processes (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!