Efficient conversion of sewage sludge into hydrochar by microwave-assisted hydrothermal carbonization.

Sci Total Environ

School of Land Resources and Environment, Key Laboratory of Agricultural Resource and Ecology in the Poyang Lake Basin of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, PR China. Electronic address:

Published: January 2022

The treatment of sewage sludge (SS) is an environmental problem worldwide. In recent years, hydrothermal carbonization (HTC) of SS for hydrochar (HC) has attracted extensive attention. This study preliminarily explored the microwave-assisted HTC of SS for the first time. Increasing the reaction temperature (150-250 °C) and reaction time (0-120 min) resulted in a decrease in the HC yield, and it gradually increased with the rising solid-liquid ratio (0.03-0.25 g/mL). Compared with raw SS, the HC products possessed higher aromaticity, carbonization degree, porosity, and polarity, and lower content of soluble nutrients (N/P/K) and leachable heavy metals (Cu, Zn, Pb, Cd, Cr, and Ni), indicating a lower risk of nutrient and heavy metal loss. Attention should be paid to the total contents of Zn and Cd in HC exceeded the permitted value for use in cultivated land with edible crops. The use of CaO as a catalyst improved the yield of HC, made the HC and process water (PW) weakly alkaline, and further passivated the heavy metals in the HC. In the case of HPO, although the conversion of SS was enhanced (lower content of volatile organic matter in HC), the contents of soluble nutrients (N/P/K) in HC/PW increased, and the migration of Zn and Cd into process water was enhanced. The HCs obtained in this study had poor combustion properties, but higher ignition temperatures than raw SS. PW must be properly treated or recycled because it still contained high contents of organic matter and nutrients. This fundamental study provides basic insights into the microwave-assisted HTC of SS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149874DOI Listing

Publication Analysis

Top Keywords

sewage sludge
8
hydrothermal carbonization
8
microwave-assisted htc
8
lower content
8
soluble nutrients
8
nutrients n/p/k
8
heavy metals
8
process water
8
organic matter
8
efficient conversion
4

Similar Publications

Design of S-Scheme CuInS/CeO Heterojunction for Enhanced Photocatalytic Degradation of Pharmaceuticals in Wastewater.

Langmuir

January 2025

Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.

The release of common medications and illegal drugs into the environment could be potentially harmful to the ecosystem and hamper the behavior and growth of plants and animals. These pollutants gain access to water through sewage and factory discharges and have been found to exceed safety limits in water bodies. Therefore, there is an urgent need for improved wastewater purification systems.

View Article and Find Full Text PDF

Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies.

Int J Phytoremediation

January 2025

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China.

Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Polylactic acid microplastics before and after aging induced neurotoxicity in zebrafish by disrupting the microbiota-gut-brain axis.

J Hazard Mater

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

Polylactic acid (PLA) is a biodegradable alternative to traditional plastics due to its excellent biocompatibility. However, PLA is challenging to fully degrade and can easily become microplastics (MPs) in surface water, a process accompanied by aging. This study found that aged PLA (APLA) MPs exhibited increased surface roughness, decreased surface potential, and more oxygen-containing functional groups compared to PLA.

View Article and Find Full Text PDF

In this study, a hydroxylamine (HA)-enhanced magnetic spinel catalyst CuFeO-activated peroxymonosulfate (PMS) system (CuFeO/PMS/HA) was constructed to degrade Sulfamethoxazole (SMX). Results from experiments and theoretical calculations indicated that active species generation mechanism involved the direct activation of PMS by HA, the redox cycles acceleration on the surface of CuFeO by HA, and the synergistic action of the low valence Fe and Cu species in CuFeO for PMS activation. The efficacy of other organic pollutants removal was further validated in bio-treated landfill leachate through removal performance and toxicity assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!