Due to the ever-increasing industrialization, it is critical to protect the environment and conserve water resources by developing efficient wastewater treatment methods. Traditional methods that simultaneously remove heavy metal ions and complex dyes are too expensive and tedious to commercialize. This work demonstrates the versatility, effectiveness, and potential of a biomass-derived adsorbent (from a mangrove fruit of Rhizophora mucronata) synthesized using a simple route for rapid adsorption of complex dyes and heavy metals with an efficiency of near unity. The cartridges were prepared using activated carbon that removes both dye molecules and heavy metal ions simultaneously from wastewater, corroborating its applicability/feasibility to treat wastewater. Owing to the high surface area (1061.5 mg) and the pore volume (0.5325 cmg), the adsorbent showed >99% removal efficiency in just 12 min of exposure to wastewater. The cartridge exhibits >90% removal efficiency of both dyes and heavy metals from its mixed feed solution. The Langmuir and Freundlich models successfully explained the adsorption kinetics. These developed cartridges are versatile, rapid, efficient, and promising candidates for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.132085 | DOI Listing |
Braz J Biol
January 2025
National University of Medical Sciences, Department of Nutrition & Dietetics, Rawalpindi, Pakistan.
One of the biggest public health problems globally is that of iron deficiency anemia. The present research aimed to determine the effect of prebiotics along with iron fortification on iron biomarkers in female anemic rats as some evidence suggests that prebiotics convert increase the solubility of iron, thereby enhancing its absorption. A total of 126 Sprague Dawley rats were fed with sixteen different types of fortified feed containing prebiotics (Inulin + Galacto Oligosaccharides) and Iron Fortificants (Sodium Ferric Ethylenediaminetetraacetate + Ferrous Sulphate).
View Article and Find Full Text PDFBraz J Biol
January 2025
Near East University, Operational Research Center in Healthcare, Mersin, Turkey.
Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
Unlabelled: This study aimed to evaluate gold nanoparticles (GNPs) and photobiomodulation (PBM), associated with antibothropic serum (AS), to treat a muscle lesion induced by Bothrops jararaca venom.
Methods: 108 Swiss male mice were used, divided into nine groups (n = 12) with different combinations of treatments. Animals were inoculated with 250 µg of B.
Biol Trace Elem Res
January 2025
Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, 459000, Henan, China.
The effect of heavy metal availability and interaction in feed on feces heavy metal excretion in mice has rarely been investigated. In this work, feed containing a polluted soil (total Cd = 6.34, total Pb = 387 mg kg) amended with phosphate, bentonite and lime, or feed spiked with soluble Pb and Cd were fed to mice for 10 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!