A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session61hsv3rochuvquln7revjtpm5cn3sali): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. | LitMetric

Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness.

Acta Biomater

The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China. Electronic address:

Published: November 2021

AI Article Synopsis

  • Cancer stem cells (CSCs) are less stiff than regular tumor cells, making them a potential target for nanoparticle-based treatments.
  • Breast CSCs show higher uptake of nitrogen-doped graphene quantum dots (N-GQDs) due to their lower stiffness, which influences how nanoparticles enter cells.
  • This study indicates that using N-GQDs can effectively eliminate soft CSCs while minimizing harm to healthy tissues, presenting a novel strategy in cancer treatment.

Article Abstract

As the driving force of tumor progression, cancer stem cells (CSCs) hold much lower cellular stiffness than bulk tumor cells across many cancer types. However, it remains unclear whether low cell stiffness can be harnessed in nanoparticle-based therapeutics for CSC targeting. We report that breast CSCs exhibit much lower stiffness but considerably higher uptake of nitrogen-doped graphene quantum dots (N-GQDs) than bulk tumor cells. Softening/stiffening cells enhances/suppresses nanoparticle uptake through activating/inhibiting clathrin- and caveolae-mediated endocytosis, suggesting that low cell stiffness mediates the elevated uptake in soft CSCs that may lead to the specific elimination. Further, soft CSCs enhance drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs by reducing intracellular pH and exocytosis. Remarkably, drug-loaded N-GQDs specifically eliminate soft CSCs both in vitro and in vivo, inhibit tumor but not animal growth, and reduce the tumorigenicity of xenograft cells. Our findings unveil a new mechanism by which low cellular stiffness can be harnessed in nanoparticle-based strategies for specific CSC elimination, opening a new paradigm of cancer mechanomedicine. STATEMENT OF SIGNIFICANCE: Low cell stiffness is associated with high malignancy of tumor cells and thus serves as a mechanical hallmark of CSCs. However, it remains unclear whether cellular stiffness can be exploited for specific targeting of soft CSCs. This work reports that soft CSCs exhibit high N-GQD uptake compared to stiff tumor cells, which is regulated by cellular stiffness. Further, soft CSCs have enhanced drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs, which enable the specific elimination of malignant CSCs both in vitro and in vivo with minimal side effect. In summary, our study demonstrates that CSC's low stiffness can be harnessed as a mechanical target for specific eradication, which provides a new paradigm of cancer mechanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.08.053DOI Listing

Publication Analysis

Top Keywords

soft cscs
24
low cell
16
cell stiffness
16
cellular stiffness
16
tumor cells
16
specific elimination
12
stiffness harnessed
12
drug-loaded n-gqds
12
stiffness
10
cscs
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!