Background: To ensure replicative immortality in cancer, telomeres must be maintained through activation of telomere maintenance mechanisms (TMMs) that are dependent on telomerase or the alternative lengthening of telomeres (ALT) pathway. Although TMM pathways have traditionally been considered to be mutually exclusive, ALT hallmarks have been identified in cancers defined as being telomerase-positive, supporting TMM coexistence. In castration-resistant prostate cancer (CRPC), in vitro models were thought to be universally dependent on telomerase as the primary TMM; however, CRPC models with androgen receptor (AR) loss demonstrate ALT hallmarks with limited telomerase activity and require ALT-associated PML bodies (APBs) for sustained telomere maintenance. The TMM coexistence in AR-negative CRPC is reliant on the ALT regulator protein, SLX4IP.

Methods: To identify the regions of SLX4IP responsible for the induction of APBs and telomere preservation in CRPC models, five 3xFLAG-tagged SLX4IP constructs were designed and stably introduced into parental C4-2B, DU145, and PC-3 cells. Once generated, these cell lines were interrogated for APB abundance and SLX4IP construct localization via immunofluorescence-fluorescence in situ hybridization (IF-FISH) and coimmunoprecipitation experiments for telomeric localization. Similarly, PC-3 cells with endogenous SLX4IP knockdown and SLX4IP construct introduction were interrogated for APB abundance, telomere length preservation, and senescent rescue.

Results: Here, we define the N-terminus of SLX4IP as being responsible for the promotion of the ALT-like phenotype of AR-negative CRPC models. Specifically, the N-terminus of SLX4IP was sufficient for promoting APB formation to a similar degree as full-length SLX4IP across CRPC cell lines. Additionally, APB promotion by the N-terminus of SLX4IP rescued telomere shortening and senescent induction triggered by SLX4IP knockdown in AR-negative CRPC cells. Moreover, APB formation and telomere maintenance were dependent on the ability of the N-terminus to direct SLX4IP localization at telomeres and APBs.

Conclusions: These findings identify the role of the uncharacterized ALT regulator SLX4IP in the promotion of TMM coexistence to perpetuate replicative immortality in CRPC in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460604PMC
http://dx.doi.org/10.1002/pros.24225DOI Listing

Publication Analysis

Top Keywords

slx4ip
13
cell lines
12
telomere maintenance
12
tmm coexistence
12
crpc models
12
ar-negative crpc
12
n-terminus slx4ip
12
telomeric localization
8
castration-resistant prostate
8
prostate cancer
8

Similar Publications

To study telomere maintenance mechanism (TMM) activation during malignant transformation, we compared neurofibroma (NF) and malignant peripheral nerve sheath tumor (MPNST) in the same patient with type-1 neurofibromatosis (NF1), a total of 20 NF-MPNST pairs in 20 NF1 patients. These comparisons minimized genetic bias and contrasted only changes associated with malignant transformation, while subtracting changes that developed upon the transformation of normal cells to the benign tumor. TGF-β superfamily genes were found to activate the PAX and SOX transcription factors, leading to TMM activation.

View Article and Find Full Text PDF

Telomere maintenance and elongation allows cells to gain replicative immortality and evade cellular senescence during cancer development. While most cancers use telomerase to maintain telomere lengths, a subset of cancers engage the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. ALT is present in 5%-10% of all cancers, although the prevalence is dramatically higher in certain cancer types, including complex karyotype sarcomas, isocitrate dehydrogenase-mutant astrocytoma (WHO grade II-IV), pancreatic neuroendocrine tumours, neuroblastoma and chromophobe hepatocellular carcinomas.

View Article and Find Full Text PDF

All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break.

View Article and Find Full Text PDF

Background: To ensure replicative immortality in cancer, telomeres must be maintained through activation of telomere maintenance mechanisms (TMMs) that are dependent on telomerase or the alternative lengthening of telomeres (ALT) pathway. Although TMM pathways have traditionally been considered to be mutually exclusive, ALT hallmarks have been identified in cancers defined as being telomerase-positive, supporting TMM coexistence. In castration-resistant prostate cancer (CRPC), in vitro models were thought to be universally dependent on telomerase as the primary TMM; however, CRPC models with androgen receptor (AR) loss demonstrate ALT hallmarks with limited telomerase activity and require ALT-associated PML bodies (APBs) for sustained telomere maintenance.

View Article and Find Full Text PDF

Feline coronavirus (FCoV) is a complex pathogen causing feline infectious peritonitis (FIP). Host genetics represents a factor contributing to the pathogenesis of the disease. Differential susceptibility of various breeds to FIP was reported with controversial results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!