Reactivity and Potential Profile across the Electrochemical LiCoO-LiPS Interface Probed by X-ray Photoelectron Spectroscopy.

ACS Appl Mater Interfaces

Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.

Published: September 2021

All-solid-state lithium batteries are a promising alternative for next-generation safe energy storage devices, provided that parasitic side reactions and the resulting hindrances in ionic transport at the electrolyte-electrode interface can be overcome. Motivated by the need for a fundamental understanding of such an interface, we present here real-time measurements of the (electro-)chemical reactivity and local surface potential at the electrified interface (LiS)-PS (LPS) and LiCoO (LCO) using X-ray photoelectron spectroscopy (XPS) supplemented by X-ray photoemission electron microscopy (XPEEM). We identify three main degradation mechanisms: (i) reactivity at open circuit potential leading to the formation of reduced Co in the +2 oxidation state at the LCO surface, detected in the Co L-edge, which is further increased upon cycling, (ii) onset of electrochemical oxidation of the LPS at 2.3 V vs InLi detected in the S 2p and P 2p core levels, and (iii) Co-ion diffusion into the LPS forming CoS species at 3.3 V observed in both S 2p and Co 2p core levels. Concurrently, a local surface overpotential of 0.9 V caused by a negative localized charge layer is detected at the LPS-LCO interface. Furthermore, in agreement with previous theoretical results, the presence of a sharp potential drop at the interface between active materials and solid electrolyte is demonstrated in all-solid-state batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c09605DOI Listing

Publication Analysis

Top Keywords

x-ray photoelectron
8
photoelectron spectroscopy
8
local surface
8
core levels
8
interface
6
reactivity potential
4
potential profile
4
profile electrochemical
4
electrochemical licoo-lips
4
licoo-lips interface
4

Similar Publications

The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.

View Article and Find Full Text PDF

Gold-Mercury-Platinum Alloy for Light-Enhanced Electrochemical Detection of Hydrogen Peroxide.

Sensors (Basel)

December 2024

Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.

View Article and Find Full Text PDF

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF

This study presents a novel FeO/C composite material synthesized from red mud through a process of magnetic roasting and separation. The research explores the impact of FeO/C dosages, sodium persulfate (PS) concentrations, and initial solution pH on the chemical oxygen demand (COD) removal efficiency using Acid Orange 7 as a model pollutant. Optimal conditions were identified as 3 g/L FeO/C, 20 mM PS, and an initial pH of 2, achieving a 94.

View Article and Find Full Text PDF

Surface Hydrophilic Modification of Polypropylene by Nanosecond Pulsed Ar/O Dielectric Barrier Discharge.

Materials (Basel)

December 2024

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.

Polypropylene (PP) membranes have found diverse applications, such as in wastewater treatment, lithium-ion batteries, and pharmaceuticals, due to their low cost, excellent mechanical properties, thermal stability, and chemical resistance. However, the intrinsic hydrophobicity of PP materials leads to membrane fouling and filtration flux reduction, which greatly hinders the applications of PP membranes. Dielectric barrier discharge (DBD) is an effective technique for surface modification of materials because it generates a large area of low-temperature plasma at atmospheric pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!