Studies from cryoenvironments on Earth have demonstrated that microbial life is widespread and have identified microorganisms that are metabolically active and can replicate at subzero temperatures if liquid water is present. However, cryophiles (subzero-growing organisms) often exist in low densities in the environment and their growth rate is low, making them difficult to study. Compounding this, a large number of dormant and dead cells are preserved in frozen settings. Using integrated genomic and activity-based approaches is essential to understanding the cold limits of life on Earth, as well as how cryophilic microorganisms are poised to adapt and metabolize in warming settings, such as in thawing permafrost. An increased understanding of cryophilic lifestyles on Earth will also help inform how (and where) we look for potential microbial life on cold planetary bodies in our solar system such as Mars, Europa, and Enceladus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547454PMC
http://dx.doi.org/10.1128/mSystems.00852-21DOI Listing

Publication Analysis

Top Keywords

microbial life
8
cryomicrobial ecology
4
ecology learn
4
life
4
learn life
4
life left
4
left cold
4
cold studies
4
studies cryoenvironments
4
cryoenvironments earth
4

Similar Publications

Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.

View Article and Find Full Text PDF

Agricultural subsoil microbiomes and functions exhibit lower resistance to global change than topsoils in Chinese agroecosystems.

Nat Food

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.

Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.

View Article and Find Full Text PDF

Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent.

View Article and Find Full Text PDF

Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation.

J Environ Manage

January 2025

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:

Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.

View Article and Find Full Text PDF

Alanine supplementation enhancing cordycepin production in Cordyceps militaris via upregulation of Cns2 and Cns3 genes expression levels.

J Food Drug Anal

December 2024

Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.

Cordycepin, a key bioactive compound produced by Cordyceps militaris, faces the challenge of low productivity for commercial use. In this study, alanine supplementation in Cordyceps militaris boosted cordycepin production, peaking at 3 mg/g with 12 g/L concentration. Transcriptome analysis revealed 1711 differentially expressed genes, Pathway analysis indicates that protein processing in the endoplasmic reticulum was the most affected pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!