Genetic interaction of Pax3 mutation and canonical Wnt signaling modulates neural tube defects and neural crest abnormalities.

Genesis

Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.

Published: November 2021

Mouse models provide opportunities to investigate genetic interactions that cause or modify the frequency of neural tube defects (NTDs). Mutation of the PAX3 transcription factor prevents neural tube closure, leading to cranial and spinal NTDs whose frequency is responsive to folate status. Canonical Wnt signalling is implicated both in regulation of Pax3 expression and as a target of PAX3. This study investigated potential interactions of Pax3 mutation and canonical Wnt signalling using conditional gain- and loss-of-function models of β-catenin. We found an additive effect of β-catenin gain of function and Pax3 loss of function on NTDs and neural crest defects. β-catenin gain of function in the Pax3 expression domain led to significantly increased frequency of cranial but not spinal NTDs in embryos that are heterozygous for Pax3 mutation, while both cranial and spinal neural tube closure were exacerbated in Pax3 homozygotes. Similarly, deficits of migrating neural crest cells were exacerbated by β-catenin gain of function, with almost complete ablation of spinal neural crest cells and derivatives in Pax3 homozygous mutants. Pax3 expression was not affected by β-catenin gain of function, while we confirmed that loss of function led to reduced Pax3 transcription. In contrast to gain of function, β-catenin knockout in the Pax3 expression domain lowered the frequency of cranial NTDs in Pax3 null embryos. However, loss of function of β-catenin and Pax3 resulted in spinal NTDs, suggesting differential regulation of cranial and spinal neural tube closure. In summary, β-catenin function modulates the frequency of PAX3-related NTDs in the mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvg.23445DOI Listing

Publication Analysis

Top Keywords

neural tube
20
gain function
20
neural crest
16
cranial spinal
16
pax3 expression
16
β-catenin gain
16
pax3
15
pax3 mutation
12
canonical wnt
12
tube closure
12

Similar Publications

It is rare to find free floating fat droplets in the cerebral spinal fluid (CSF) spaces of the brain. When fat droplets are seen in the CSF spaces, the most common cause is the rupture of a dermoid cyst. Dermoid cysts are congenital inclusion cysts that form during the neural tube closure between the third and fifth weeks of embryogenesis.

View Article and Find Full Text PDF

Giant encephalocele in newborns: prenatal diagnosis, management and outcome.

Childs Nerv Syst

January 2025

Department of Global Health, Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada.

Background: A giant encephalocele associated with Chiari malformation is a rare congenital anomaly from a cephalad neural tube defect. Early prenatal diagnosis and parental counseling are essential; as early surgical intervention can improve outcomes.

Methods: Between 2010 and 2023, twenty-seven newborns out of 43,815 delivered at our institution were diagnosed with encephaloceles, including seven cases of giant encephalocele associated with Chiari malformation type III.

View Article and Find Full Text PDF

Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development.

View Article and Find Full Text PDF

Iniencephaly: A Challenging Prenatal Diagnosis of a Neural Tube Defect.

Cureus

December 2024

Gynecology and Obstetrics Department, Unidade Local de Saúde de Viseu Dão-Lafões, Viseu, PRT.

Iniencephaly is a rare malformation of the base of the cranium, with an almost always fatal prognosis. This condition is part of the category of defects related to neural tube closure. Prenatal diagnosis can now be performed through ultrasound evaluation, allowing timely counseling.

View Article and Find Full Text PDF

Myelomeningocele (MMC) is the most severe and disabling form of spina bifida with chronic health multisystem complications and social and economic family and health systems burden. In the present study, we aimed to investigate the genetic risk estimate for MMC in a cohort of 203 Mexican nuclear families with discordant siblings for the defect. Utilizing a custom Illumina array, we analyzed 656 single nucleotide polymorphisms (SNPs) of 395 candidate genes to identify a polygenic risk profile for MMC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!