A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linking Perfluorosulfonic Acid Ionomer Chemistry and High-Current Density Performance in Fuel-Cell Electrodes. | LitMetric

Linking Perfluorosulfonic Acid Ionomer Chemistry and High-Current Density Performance in Fuel-Cell Electrodes.

ACS Appl Mater Interfaces

Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Published: September 2021

Transport phenomena are key in controlling the performance of electrochemical energy-conversion technologies and can be highly complex, involving multiple length scales and materials/phases. Material designs optimized for one reactant species transport however may inhibit other transport processes. We explore such trade-offs in the context of polymer-electrolyte fuel-cell electrodes, where ionomer thin films provide the necessary proton conductivity but retard oxygen transport to the Pt reaction site and cause interfacial resistance due to sulfonate/Pt interactions. We examine the electrode overall gas-transport resistance and its components as a function of ionomer content and chemistry. Low-equivalent-weight ionomers allow better dissolved-gas and proton transport due to greater water uptake and low crystallinity but also cause significant interfacial resistance due to the high density of sulfonic acid groups. These effects of equivalent weight are also observed ionic conductivity and CO displacement measurements. Of critical importance, the results are supported by ellipsometry and X-ray scattering of model thin-film systems, thereby providing direct linkages and applicability of model studies to probe complex heterogeneous structures. Structural and resultant performance changes in the electrode are shown to occur above a threshold sulfonic-group loading, highlighting the significance of ink-based interactions. Our findings and methodologies are applicable to a variety of solid-state energy-conversion devices and material designs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07611DOI Listing

Publication Analysis

Top Keywords

fuel-cell electrodes
8
material designs
8
interfacial resistance
8
transport
5
linking perfluorosulfonic
4
perfluorosulfonic acid
4
acid ionomer
4
ionomer chemistry
4
chemistry high-current
4
high-current density
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!