AI Article Synopsis

  • GIP plays a significant role in lipid metabolism, and this study examined its effects during stable insulin levels in type 1 diabetes patients.
  • Ten male participants, all type 1 diabetes patients, received either GIP or a placebo in a controlled setting, showing that GIP infusion significantly increased plasma glycerol and free fatty acids compared to the placebo.
  • The results indicate that GIP has a direct lipolytic (fat-reducing) effect even in hyperglycemic conditions with stable basal insulin levels.

Article Abstract

Glucose-dependent insulinotropic polypeptide (GIP) plays an important role in the glucose and lipid metabolism. We investigated the effects of exogenous GIP on lipid metabolism during time of stable insulin levels. Ten male patients with type 1 diabetes without endogenous insulin secretion (C-peptide-negative, mean [±SD] age 26 ± 4years, body mass index 24 [±2] kg/m , glycated haemoglobin 56 [±8] mmol/mol or 7.3 [±0.8]%) were studied in a randomized, double-blind, placebo-controlled, crossover study with continuous intravenous infusions of GIP (4 pmol/kg/min) or placebo (saline), during two separate 90-minute hyperglycaemic (12 mmol/L) clamps with basal insulin substitution (0.1-0.2 mU/kg/min). Plasma glycerol concentrations increased from baseline during GIP infusion and decreased during placebo infusion (baseline-subtracted area under the curve [bsAUC] 703 ± 407 vs. -262 ± 240 μmol/L × min, respectively; P < 0.001). Free fatty acids (FFAs) increased during GIP infusions (bsAUC 5505 ± 2170 μEq/L × min) and remained unchanged during placebo infusion (bsAUC -74 ± 2363 μEq/L × min), resulting in a significant difference between GIP and placebo infusions (P < 0.001). Plasma concentrations of glucose, insulin, glucagon-like peptide-1 and glucagon were similar during GIP and placebo infusions. GIP increased plasma glycerol and FFAs in patients with type 1 diabetes during hyperglycaemia and stable basal insulin levels. This supports a direct lipolytic effect of GIP at high glucose and low levels of plasma insulin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dom.14545DOI Listing

Publication Analysis

Top Keywords

glucose-dependent insulinotropic
8
insulinotropic polypeptide
8
basal insulin
8
insulin substitution
8
type diabetes
8
randomized double-blind
8
double-blind placebo-controlled
8
placebo-controlled crossover
8
lipid metabolism
8
polypeptide induces
4

Similar Publications

A novel bombesin-related peptide modulates glucose tolerance and insulin secretion in non-obese and hypothalamic-obese rats.

Toxicon

January 2025

Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Biociências e Saúde (PPG-BCS) - Cascavel, Brazil. Electronic address:

This study investigated the effects of a novel bombesin-related peptide (BR-b), derived from the skin of the Chaco tree frog (Boana raniceps), on glucose homeostasis in non-obese and hypothalamic-obese male rats. Hypothalamic obesity was induced in neonatal rats through high-dose administration of monosodium glutamate (MSG; 4 g/kg), while control animals (CTL) received an equimolar saline solution. At 70 days of age, both MSG and CTL groups underwent an oral glucose tolerance test (OGTT; 2 g/kg) with or without prior intraperitoneal administration of BR-b at doses of 0.

View Article and Find Full Text PDF

Chronic GIPR agonism results in pancreatic islet GIPR functional desensitisation.

Mol Metab

January 2025

Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom. Electronic address:

Objective: There is renewed interest in targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) for treatment of obesity and type 2 diabetes. G-protein coupled receptor desensitisation is suggested to reduce the long-term efficacy of glucagon-like-peptide 1 receptor (GLP-1R) agonists and may similarly affect the efficacy of GIPR agonists. We explored the extent of pancreatic GIPR functional desensitisation with sustained agonist exposure.

View Article and Find Full Text PDF

Context: In males of normal weight, intraduodenal administration of calcium enhances the effects of the amino acid, L-tryptophan (Trp), to suppress energy intake, associated with greater stimulation of cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) secretion (key mechanisms underlying the regulation of pyloric motility and gastric emptying), but not gastrin or glucose-dependent insulinotropic polypeptide (GIP).

Objective: Given the implications for the management of obesity, the current study evaluated the effects of calcium, when administered alone and in combination with Trp, on gut hormone secretion, antropyloroduodenal motility and energy intake in males with obesity.

Methods: Fifteen males with obesity and without type 2 diabetes (mean±SD; age: 27±8 years; body mass index: 30±2 kg/m2; HbA1c: 5.

View Article and Find Full Text PDF

The other side of the incretin story: GIPR signaling in energy homeostasis.

Cell Metab

January 2025

Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT 06520, USA. Electronic address:

Incretin receptor agonists have been effective in combatting obesity and diabetes. While the body of knowledge regarding the signaling mechanisms of glucagon-like peptide 1 (GLP-1) receptor agonists is ever-growing, glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists are less understood. The previewed papers offer insight into the impact of adipose GIPR on energy and weight homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!