Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In 2016, the International Agency for Research on Cancer, part of the World Health Organization, released the Exposome-Explorer, the first database dedicated to biomarkers of exposure for environmental risk factors for diseases. The database contents resulted from a manual literature search that yielded over 8,500 citations, but only a small fraction of these publications were used in the final database. Manually curating a database is time-consuming and requires domain expertise to gather relevant data scattered throughout millions of articles. This work proposes a supervised machine learning pipeline to assist the manual literature retrieval process. The manually retrieved corpus of scientific publications used in the Exposome-Explorer was used as training and testing sets for the machine learning models (classifiers). Several parameters and algorithms were evaluated to predict an article's relevance based on different datasets made of titles, abstracts and metadata. The top performance classifier was built with the Logistic Regression algorithm using the title and abstract set, achieving an F2-score of 70.1%. Furthermore, we extracted 1,143 entities from these articles with a classifier trained for biomarker entity recognition. Of these, we manually validated 45 new candidate entries to the database. Our methodology reduced the number of articles to be manually screened by the database curators by nearly 90%, while only misclassifying 22.1% of the relevant articles. We expect that this methodology can also be applied to similar biomarkers datasets or be adapted to assist the manual curation process of similar chemical or disease databases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417071 | PMC |
http://dx.doi.org/10.3389/frma.2021.689264 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!