The metabolism of epicardial adipose tissue (EAT) is closely related to coronary atherosclerotic heart disease (CAHD), but the specific mechanism is not fully understood. In this study, we investigated the effects of EAT microenvironment on adipose metabolism from the viewpoint of EAT-derived exosomes and epicardial adipose stem cells (EASCs). EAT samples from CAHD patients and non-CAHD patients were collected to obtain exosomes via tissue culture. MiRNA sequencing was performed to analyze differences in miRNA expression in exosomes between groups. Luciferase reporter assay was then performed to verify the miRNA target gene. EAT was digested by collagenase to obtain EASCs, which were induced to mature adipocytes . Immunochemical staining and western blotting were performed to detect protein expression levels. The results showed that CAHD patients had higher levels of EASCs in EAT, and no significant difference in the adipogenic differentiation ability of EASCs was observed between CAHD and non-CAHD patients . This indicates that the EAT microenvironment is a key factor affecting the adipogenic differentiation of EASCs. The EAT-derived exosomes from CAHD patients inhibited adipogenic differentiation of EASCs . Sequencing analysis showed that miR-3064-5p was highly expressed in EAT-derived exosomes in CAHD patients, and its inhibitor could improve the adipogenic differentiation of EASCs. Luciferase reporter assay results showed that the target gene of miR-3064-5p is neuronatin (Nnat). Nnat remained silent in EASCs and was less expressed in EAT of CAHD patients. Abovementioned results suggest that Nnat is the key to regulating the adipogenic differentiation of EASCs, and miR-3064-5p in EAT-derived exosomes can inhibit the expression of Nnat by targeting its mRNA, thereby affecting the adipogenic differentiation of EASCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416507PMC
http://dx.doi.org/10.3389/fcvm.2021.709079DOI Listing

Publication Analysis

Top Keywords

adipogenic differentiation
28
cahd patients
20
differentiation eascs
20
eat-derived exosomes
16
epicardial adipose
12
eascs
10
adipose stem
8
stem cells
8
eat microenvironment
8
eascs eat
8

Similar Publications

Substrate stiffness modulates osteogenic and adipogenic differentiation of osteosarcoma through PIEZO1 mediated signaling pathway.

Cell Signal

January 2025

The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China. Electronic address:

Most osteosarcoma (OS) cases exhibit poor differentiation at the histopathological level. Disruption of the normal osteogenic differentiation process results in the unregulated proliferation of precursor cells, which is a critical factor in the development of OS. Differentiation therapy aims to slow disease progression by restoring the osteogenic differentiation process of OS cells and is considered a new approach to treating OS.

View Article and Find Full Text PDF

Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Lipids contribute significantly to the flavor of cell-cultured fish meat as precursor components of flavor compounds. Here, we initially reported the differences in lipid metabolite profiles and volatile compounds between adipogenic differentiation of adipose stem cells (ASCs) and adipocytic transdifferentiation of muscle stem cells (MSCs) from large yellow croakers. A total of 2106 lipid metabolites were identified by UPLC-MS/MS.

View Article and Find Full Text PDF

Japanese Leaf Burdock Extract Inhibits Adipocyte Differentiation in 3T3-L1 Cells.

Plant Foods Hum Nutr

January 2025

Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.

Burdock, Arctium lappa Linn. (Asteraceae), is cultivated in East Asian for its edible roots, and its seeds are used in a herbal medicine. Burdock seeds and roots exhibit anti-adipogenic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!