How Phagocytes Acquired the Capability of Hunting and Removing Pathogens From a Human Body: Lessons Learned From Chemotaxis and Phagocytosis of (Review).

Front Cell Dev Biol

Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, United States.

Published: August 2021

How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms-protozoans-appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals-metazoans-appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417749PMC
http://dx.doi.org/10.3389/fcell.2021.724940DOI Listing

Publication Analysis

Top Keywords

chemotaxis phagocytosis
12
billion years
8
years ago
8
phagocytes
5
phagocytes acquired
4
acquired capability
4
capability hunting
4
hunting removing
4
removing pathogens
4
pathogens human
4

Similar Publications

Introduction: Granulocyte concentrates (GC) are leukocyte preparations enriched in neutrophils that can potentially save neutropenic patients from life-threatening, antimicrobial-resistant infections. The main challenge of GC transfusions is preserving the viability and antimicrobial activity of neutrophils beyond 24 h to reduce the logistical burden on collection centers and increase the availability of this cell therapy. Thus, the aim of this study was to explore extending the ex vivo viability and antimicrobial activity of GC neutrophils up to 72 h with a unique combination of the clinically-approved additives Plasma-Lyte, SAGM, AS-3 and Alburex.

View Article and Find Full Text PDF

The Severity of COVID-19 in Systemic Lupus Erythematosus Patient.

Infect Disord Drug Targets

December 2024

Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, 440037, Maharashtra, India.

As of early October 2020, the COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, resulted in approximately 35 million cases and one million fatalities worldwide. Systemic lupus erythematosus (SLE) is an autoimmune disease marked by the generation of pathogenic autoantibodies and a lack of tolerance to nuclear self-antigens. Hypocomple-mentemia, or an abnormal blood complement deficit, is a reliable predictor of infection in SLE patients.

View Article and Find Full Text PDF

Cathelicidins are a diverse family of antimicrobial peptides found across many vertebrate species, playing a pivotal role in the innate immune system. These peptides exhibit a variety of structural motifs, including α-helices, β-hairpins, and random coils, contributing to their broad-spectrum antimicrobial activity. The structural diversity of cathelicidins allows them to interact with a wide range of microbial targets, thereby enhancing their antimicrobial efficacy.

View Article and Find Full Text PDF

Polymorphonuclear lymphocytes (PMNs) are terminally differentiated phagocytes with pivotal roles in infection, inflammation, tissue injury, and resolution. PMNs can display a breadth of responses to diverse endogenous and exogenous stimuli, making understanding of these innate immune responders vital yet challenging to achieve. Here, we report a 22-color spectral flow cytometry panel to profile primary human PMNs on population and single cell levels for surface marker expression of activation, degranulation, phagocytosis, migration, chemotaxis, and interaction with fluorescently labeled cargo.

View Article and Find Full Text PDF

Molecular cloning, expression analysis, and functional characterization of an interleukin-15 like gene in common carp ( L.).

Front Immunol

December 2024

Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China.

Article Synopsis
  • Interleukin-15 (IL-15) is an important cytokine that regulates the immune system and is produced by various immune cells, playing a key role in the activation and survival of natural killer cells and CD8 T cells.
  • Researchers cloned and studied an IL-15 homologue called IL-15L in common carp, finding it expressed in multiple tissues, particularly in the intestine, and significantly increased during infections.
  • The study showed that overexpressing IL-15L enhanced immune responses, improved the activation of immune cells, and reduced bacterial loads in infected carp, suggesting its critical role in fish immunology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!