Coxsackievirus A6 (CVA6) is a key pathogen causing hand, foot and mouth disease (HFMD). However, there are currently no specific antiviral drugs or vaccines for treating infections caused by CVA6. In this study, human rhabdomyosarcoma (RD), African green monkey kidney (Vero), and human embryonic lung diploid fibroblast (KMB17) cells were used to isolate CVA6 from 327 anal swab and fecal samples obtained during HFMD monitoring between 2009 and 2017. The VP1 genes of the isolates were sequenced and genotyped, and the biological characteristics of the representative CVA6 strains were analyzed. A total of 37 CVA6 strains of the D3 gene subtypes were isolated from RD cells, all of which belonged to the epidemic strains in mainland China. Using the adaptive culture method, 10 KMB17 cell-adapted strains were obtained; however, no Vero cell-adapted strains were acquired. Among the KMB17 cell-adapted strains, only KYN-A1205 caused disease or partial death in suckling mice, and its virulence was stronger than its RD cell-adapted strain. The pathogenic KYN-A1205 strain caused strong tropism to the muscle tissue and led to pathological changes, including muscle necrosis and nuclear fragmentation in the forelimb and hindlimb. Sequence analysis demonstrated that the KYN-A1205 strain exhibited multiple amino acid mutations after KMB17 cell adaptation. Moreover, it showed strong pathogenicity, good immunogenicity and genetic stability, and could be used as an experimental CVA6 vaccine candidate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418080 | PMC |
http://dx.doi.org/10.3389/fcimb.2021.700191 | DOI Listing |
Biologicals
February 2025
Health Biotechnology Directorate, Bio and Emerging Technology Institute, Addis Ababa, Ethiopia. Electronic address:
Infectious Bursal Disease is a highly contagious, immunosuppressive viral disease of young chicks caused by the Infectious Bursal Disease Virus (IBDV). The study was carried out at the National Veterinary Institute (NVI) of Ethiopia to evaluate the competence of the DF-1 cell culture adapted vaccine strain of IBDV as a vaccine candidate. DF-1 cells at passage 27 confluent monolayer was infected with 1 ml of LC-75 vaccine strain virus by adsorption method and recorded as passage 1 (P).
View Article and Find Full Text PDFElife
December 2024
Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes.
View Article and Find Full Text PDFVirology
December 2024
Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand. Electronic address:
African swine fever virus (ASFV) poses a significant threat to the global swine industry and requires improved control strategies. Here, we developed a Differentiating Infected from Vaccinated Animals (DIVA) assay based on the MGF100-1L protein, which is absent in a cell-adapted ASFV strain lacking several multigene family (MGF) genes. We analyzed seven deleted genes, including MGF genes, from the right variable region of the ASFV genome against sera from convalescent pigs.
View Article and Find Full Text PDFMicrobiol Spectr
November 2024
Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China.
Front Microbiol
June 2024
Tecon Bio-Pharmaceuticals Co. Ltd., Urumqi, China.
Rapid evolution of (PRRSV) is the bottleneck for effective prevention and control of PRRS. Thus, understanding the prevalence and genetic background of PRRSV strains in swine-producing regions is important for disease prevention and control. However, there is only limited information about the epizootiological situation of PRRS in the Xinjiang Uygur Autonomous Region, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!