Integrated Analysis of mRNA and Non-coding RNA Transcriptome in Pepper () Hybrid at Seedling and Flowering Stages.

Front Genet

Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China.

Published: August 2021

AI Article Synopsis

  • Pepper is a key vegetable, and this study analyzed mRNA and ncRNA profiles to explore gene expression changes between hybrid pepper plants and their parent strains during seedling and flowering stages.
  • Findings indicated that the hybrid pepper exhibited notable advantages in growth characteristics, such as larger leaf area and improved fruit traits, linked to the upregulation of nine plant hormone signal transduction pathway members.
  • Additionally, researchers identified thousands of ncRNAs, particularly downregulation of specific microRNAs that may influence pepper growth, and constructed regulatory networks to shed light on the molecular mechanisms underlying pepper heterosis.

Article Abstract

Pepper is an important vegetable in the world. In this work, mRNA and ncRNA transcriptome profiles were applied to understand the heterosis effect on the alteration in the gene expression at the seedling and flowering stages between the hybrid and its parents in . Our phenotypic data indicated that the hybrid has dominance in leaf area, plant scope, plant height, and fruit-related traits. Kyoto Encyclopedia of Genes and Genomes analysis showed that nine members of the plant hormone signal transduction pathway were upregulated in the seedling and flowering stages of the hybrid, which was supported by weighted gene coexpression network analysis and that (auxin response factor 8), (auxin-responsive protein IAA20), (ethylene-responsive transcription factor), and (ethylene-responsive transcription factor WIN1) were candidate hub genes, suggesting the important potential role of the plant hormone signal transduction in pepper heterosis. Furthermore, some transcription factor families, including bHLH, MYB, and HSF were greatly over-dominant. We also identified 2,525 long ncRNAs (lncRNAs), 47 micro RNAs (miRNAs), and 71 circle RNAs (circRNAs) in the hybrid. In particular, downregulation of miR156, miR169, and miR369 in the hybrid suggested their relationship with pepper growth vigor. Moreover, we constructed some lncRNA-miRNA-mRNA regulatory networks that showed a multi-dimension to understand the ncRNA relationship with heterosis. These results will provide guidance for a better understanding of the molecular mechanism involved in pepper heterosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417703PMC
http://dx.doi.org/10.3389/fgene.2021.685788DOI Listing

Publication Analysis

Top Keywords

seedling flowering
12
flowering stages
12
transcription factor
12
stages hybrid
8
plant hormone
8
hormone signal
8
signal transduction
8
ethylene-responsive transcription
8
pepper heterosis
8
hybrid
6

Similar Publications

First Report of Causing Root Rot of Incense Cedar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.

View Article and Find Full Text PDF

Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.

View Article and Find Full Text PDF

A root system architecture regulator modulates OsPIN2 polar localization in rice.

Nat Commun

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).

View Article and Find Full Text PDF

Determining the optimal gamma irradiation dose for developing novel cowpea () genotypes.

Int J Radiat Biol

January 2025

Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal.

Purpose: Cowpea ( (L.) Walp.) is a major legume crops for human consumption and livestock feed in tropical regions.

View Article and Find Full Text PDF

Climate change poses an unprecedented threat to forest ecosystems, necessitating innovative adaptation strategies. Traditional assisted migration approaches, while promising, face challenges related to environmental constraints, forestry practices, phytosanitary risks, economic barriers, and legal constraints. This has sparked debate within the scientific community, with some advocating for the broader implementation of assisted migration despite these limitations, while others emphasize the importance of local adaptation, which may not keep pace with the rapid rate of climate change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!