A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sequencing, Expression, and Functional Analyses of Four Genes Related to Fatty Acid Biosynthesis During the Diapause Process in the Female Ladybird, L. | LitMetric

The ladybird L., a predatory insect, serves as an excellent biological control agent against common agricultural pests. It undergoes a diapause phenomenon, during which a large amount of fat accumulates in the abdomen. A comprehensive analysis of this lipid accumulation can reveal the molecular mechanisms underlying diapause regulation, which can be exploited to improve the shipping and transport of the insect for agricultural applications. In this study, we compared the transcriptome of during non-diapause, diapause, and post-diapause and screened four key genes related to lipid metabolism. The cDNA of these four relevant enzymes, acetyl-CoA carboxylase (ACC), long-chain fatty acid-CoA ligase (ACSL), elongase of very-long-chain fatty acids (ELO), and very-long-chain 3-oxoacyl-CoA reductase (KAR), were cloned using reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. Their expression profiles were analyzed during the preparation and maintenance phases of diapause and the post-diapause phase. The functions of these four key enzymes in diapause were further verified using RNA interference. All four genes were most closely related to the homeotic gene from . The expression profiles of these four genes were significantly affected under diapause-inducing conditions; their expression level was the highest in the diapause preparation phase, and it gradually decreased with the diapause induction time. RNA interference showed that the target genes play important roles in fat storage during early diapause, and the decrease in their expression leads to a decrease in lipid content in . These results indicate an important role of , , , and in lipid accumulation. Our findings could help elucidate the production and accumulation of lipids by insects during the preparation for diapause and improve biological control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417001PMC
http://dx.doi.org/10.3389/fphys.2021.706032DOI Listing

Publication Analysis

Top Keywords

diapause
10
biological control
8
lipid accumulation
8
diapause post-diapause
8
expression profiles
8
rna interference
8
genes
5
sequencing expression
4
expression functional
4
functional analyses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!