Background: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.
Methods: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4.
Results: Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis.
Conclusions: Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a 'Warburg like' endophenotype that is observable in young females decades prior to clinically manifest AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8420022 | PMC |
http://dx.doi.org/10.1186/s13024-021-00483-y | DOI Listing |
Hypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering Guizhou University Guiyang China.
Camellia seed oil (CSO), a potential prebiotic agent, can significantly increase the relative abundance of () in mice gut microbiota following oral administration, this study aims to investigate the enhancing effect in vitro. The results showed that after 24-h co-cultivation with 0.5% (v/v) CSO, the growth of increased from 11.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Regenerative Medicine Research Center (RMRC), Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran.
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China.
Long COVID is an often-debilitating condition with severe, multisystem symptoms that can persist for weeks or months and increase the risk of various diseases. Currently, there is a lack of diagnostic tools for Long COVID in clinical practice. Therefore, this study utilizes plasma proteomics and metabolomics technologies to understand the molecular profile and pathophysiological mechanisms of Long COVID, providing clinical evidence for the development of potential biomarkers.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!