Resveratrol has been reported as an ideal medicine in the treatment of colorectal cancer. Meanwhile, cadmium could affect the occurrence and development of tumors in various ways. Epithelial-mesenchymal transition is a major progress regulated with colorectal cancer (CRC). We aimed to determine the effect and mechanism of resveratrol on the Cd-promoted EMT in CRC cells. First, we investigated the migration and invasion of CRC cells with or without the treatment of different concentrations of Cd by the transwell assay. Second, Western blot and RT-qPCR assay were used to detect the expressions of EMT-related markers (ZEB1, vimentin, E-cadherin, and N-cadherin) in Cd-exposed CRC cells. Subsequently, after treating with different concentrations of resveratrol, the migration and invasion of Cd-exposed CRC cells were detected again, as well as the expressions of EMT-related markers. Moreover, m6A-related RNAs in Cd-exposed CRC cells after treating with resveratrol were immunoprecipitated and validated by Me-RIP and RT-qPCR. These indicated that Cd promoted the migration and invasion of CRC cells. In addition, Cd up-regulated the expressions of N-cadherin, vimentin, and ZEB1, while it down-regulated that of E-cadherin in CRC cells. Resveratrol could reverse the Cd-promoted migration, invasion, and EMT procession by regulating the expression of ZEB1.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09603271211041678DOI Listing

Publication Analysis

Top Keywords

crc cells
28
migration invasion
20
cd-exposed crc
12
epithelial-mesenchymal transition
8
procession regulating
8
regulating expression
8
expression zeb1
8
colorectal cancer
8
crc
8
invasion crc
8

Similar Publications

Background: Polydatin (3,4',5-trihydroxy-3-β-d-glucopyranoside, PD) is known for its antioxidant and anti-inflammatory properties. Oxaliplatin (OXA)-based chemotherapy is the first-line treatment for metastatic and recurrent colorectal cancer (CRC). However, the lack of selectivity for normal cells often results in side effects.

View Article and Find Full Text PDF

The prognostic significance of epoxide hydrolases in colorectal cancer.

Biochem Biophys Rep

March 2025

Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China.

Colorectal cancer (CRC) is a common malignant cancer. Epoxide hydrolases (EHs) are involved in the development of cancer by regulating epoxides, but their relationship with CRC is unclear. We used multiple datasets to confirm the expression of different EPHX family members in CRC tissues, and to explore their association with different clinicopathologic characteristics.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are cancer cells responsible for cancer initiation, growth, metastasis, recurrence and resistance to treatment. OCT4 and c-MYC are widely accepted as CSC markers. In this study, we examined the immunohistochemical co-expression of c-MYC and OCT4 with Ki-67 in colorectal cancers (CRC) and the relationship between the results and prognostic and therapeutic data.

View Article and Find Full Text PDF

Cell therapies, including tumor antigen-loaded dendritic cells used as therapeutic cancer vaccines, offer treatment options for patients with malignancies. We evaluated the feasibility, safety, immunogenicity, and clinical activity of adjuvant vaccination with Wilms' tumor protein (WT1) mRNA-electroporated autologous dendritic cells (WT1-mRNA/DC) in a single-arm phase I/II clinical study of patients with advanced solid tumors receiving standard therapy. Disease status and immune reactivity were evaluated after 8 weeks and 6 months.

View Article and Find Full Text PDF

Background: This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!