Dietary Seleno-l-Methionine Causes Alterations in Neurotransmitters, Ultrastructure of the Brain, and Behaviors in Zebrafish ().

Environ Sci Technol

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.

Published: September 2021

Elevated concentrations of dietary selenium (Se) cause abnormalities and extirpation of fish inhabiting in Se-contaminated environments. However, its effect on fish behavior and the underlying mechanisms remain largely unknown. In this study, two-month-old zebrafish () was fed seleno-l-methionine (Se-Met) at environmentally relevant concentrations (i.e., control (2.61), low (5.43), medium (12.16), and high (34.61) μg Se/g dry weight (dw), respectively, corresponding to the C, L, M, and H treatments) for 60 days. Targeted metabolomics, histopathological, and targeted transcriptional endpoints were compared to behavioral metrics to evaluate the effects of dietary exposure to Se-Met . The results showed that the levels of total Se and malondialdehyde in fish brains were increased in a dose-dependent pattern. Meanwhile, mitochondrial damages and decreased activities of the mitochondria respiratory chain complexes were observed in the neurons at the M and H treatments. In addition, dietary Se-Met affected neurotransmitters, metabolites, and transcripts of the genes associated with the dopamine, serotonin, gamma-aminobutyric acid, acetylcholine, and histamine signaling pathways in zebrafish brains at the H treatments. The total swimming distance and duration in the Novel Arm were lowered in fish from the H treatment. This study has demonstrated that dietary Se-Met affects the ultrastructure of the zebrafish brain, neurotransmitters, and associated fish behaviors and may help enhance adverse outcome pathways for neurotransmitter-behavior key events in zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c03457DOI Listing

Publication Analysis

Top Keywords

dietary se-met
8
dietary
5
zebrafish
5
fish
5
dietary seleno-l-methionine
4
seleno-l-methionine alterations
4
alterations neurotransmitters
4
neurotransmitters ultrastructure
4
ultrastructure brain
4
brain behaviors
4

Similar Publications

Selenopeptides can be ideal dietary selenium (Se) supplements for humans. Currently, rice is not used much as a source of selenopeptides. Here, we executed the selenopeptidomics analysis of selenium-enriched rice protein hydrolysates using the full MS-dd-MS2 acquisition method and identified selenopeptides, including L{Se-Met}AK and other selenopeptides.

View Article and Find Full Text PDF

The Impact of Sodium Selenite and Seleno-L-Methionine on Stress Erythropoiesis in a Murine Model of Hemolytic Anemia.

J Nutr

December 2024

Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States. Electronic address:

Background: Selenium (Se) is an essential trace element that exerts most biological activities through selenoproteins. Dietary selenium is a key regulator of red cell homeostasis and stress erythropoiesis. However, it is unknown whether the form and increasing doses of Se supplementation in the diet impact stress erythropoiesis under anemic conditions.

View Article and Find Full Text PDF

A 10-week feeding trial, followed by 24-h nitrite stress, was performed to evaluate the effects of dietary selenium-L-methionine (Se-Met) on growth, Se accumulation, antioxidant capacity, transcripts of selenoproteins and histological changes of muscle as well as resistance to nitrite stress in spotted seabass () reared at optimal (27 °C) and high (33 °C) temperatures. Five experimental diets were formulated to contain 0, 0.9, 1.

View Article and Find Full Text PDF

Selenized non-Saccharomyces yeasts and their potential use in fish feed.

Fish Physiol Biochem

August 2024

Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile.

Selenium (Se) is a vital trace element, essential for growth and other biological functions in fish. Its significance lies in its role as a fundamental component of selenoproteins, which are crucial for optimal functioning of the organism. The inclusion of Se in the diets of farmed animals, including fish, has proved invaluable in mitigating the challenges arising from elemental deficiencies experienced in captivity conditions due to limitations in the content of fishmeal.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) derived from Mesenchymal Stromal Cells (MSCs) have shown promising therapeutic potential for multiple diseases, including intervertebral disc degeneration (IDD). Nevertheless, the limited production and unstable quality of EVs hindered the clinical application of EVs in IDD. Selenomethionine (Se-Met), the major form of organic selenium present in the cereal diet, showed various beneficial effects, including antioxidant, immunomodulatory and anti-apoptotic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!