Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a predominantly lithium-metasilicate-containing glass-ceramic, Obsidian® (Glidewell Laboratories, USA) has a peculiar composition and microstructure among other dental lithium silicates, warranting an evaluation of the crystallization process to establish relationships between microstructural evolution and mechanical properties. Blocks of the pre-crystallized material were processed into slices measuring 12 × 12 × 1.5 mm and subjected to the mandatory crystallization firing by interruption the heating ramp at temperatures between 700 °C and 820 °C (dwell time between 0 min and 10 min). The crystallization peaks of the base and the pre-crystallized glass were obtained by differential scanning calorimetry (DSC). The coefficient of thermal expansion and the glass transition temperature were derived from differential thermal analysis (DTA). X-ray diffraction (XRD) was performed to quantify and characterize the crystal phase fraction, whose microstructural changes were visualised using FE-SEM. The ball-on-three-balls surface crack in flexure method was used to track the evolution of fracture toughness. The microstructural evolution during crystallization firing was characterized by two regimes of growth: (i) the progressive revitrification (dissolution) of the 5 μm-sized LiSiO polycrystals manifested at the boundaries of nanometric single coherent scattering domains (CSDs); (ii) the non-isothermal period is marked by an Ostwald ripening process characterized by the growth of the single crystalline structures into 0.5 μm polycrystals. The decrease in the crystal fraction of LiSiO crystals from 41 vol.% to 37 vol.% is accompanied by the formation of a small amount of LiPO (6 vol.%), maintaining the total crystal phase fraction mostly constant. The K accompanied the reverse trend of crystallinity, departing from 1.63 ± 0.02 MPa√m at the pre-crystallized stage to 1.84 ± 0.06 MPa√m after 10 min at 820 °C in a linear trend. Toughening appeared counter-intuitive in view of the decreasing crystal fraction and size, to rather relate to the relaxation of the residual stresses in the interstitial glass due to the spheroidization of the initially anisotropic, elongated LiSiO crystals into round, nearly equiaxed particles, as let suggest from the disappearance of the extensive microcracking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2021.104739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!