Judging swallowing kinematic impairments via videofluoroscopy represents the gold standard for the detection and evaluation of swallowing disorders. However, the efficiency and accuracy of such a biomechanical kinematic analysis vary significantly among human judges affected mainly by their training and experience. Here, we showed that a novel machine learning algorithm can with high accuracy automatically detect key anatomical points needed for a routine swallowing assessment in real-time. We trained a novel two-stage convolutional neural network to localize and measure the vertebral bodies using 1518 swallowing videofluoroscopies from 265 patients. Our network model yielded high accuracy as the mean distance between predicted points and annotations was 4.20 ± 5.54 pixels. In comparison, human inter-rater error was 4.35 ± 3.12 pixels. Furthermore, 93% of predicted points were less than five pixels from annotated pixels when tested on an independent dataset from 70 subjects. Our model offers more choices for speech language pathologists in their routine clinical swallowing assessments as it provides an efficient and accurate method for anatomic landmark localization in real-time, a task previously accomplished using an off-line time-sinking procedure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560570 | PMC |
http://dx.doi.org/10.1016/j.media.2021.102218 | DOI Listing |
iScience
January 2025
School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
Cell-cell interactions and communication represent the fundamental cornerstone of cells' collaborative efforts in executing diverse biological processes. A profound understanding of how cells interface through various mediators is pivotal across a spectrum of biological systems. Recent strides in microfluidic technologies have significantly bolstered the precision and prowess in capturing and manipulating cells with exceptional spatial and temporal resolution.
View Article and Find Full Text PDFChem Sci
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, India.
Background: Cardiac autonomic neuropathy (CAN) is a significant complication in chronic kidney disease (CKD), leading to increased morbidity and mortality. Early detection is essential for managing CKD patients effectively, especially those on hemodialysis. This study evaluated the prevalence CAN in CKD and diagnostic accuracy of Bellavere's Score in predicting CAN in CKD patients, including those undergoing hemodialysis.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!