Improving the anode performance of microbial fuel cell with carbon nanotubes supported cobalt phosphate catalyst.

Bioelectrochemistry

Songshan Lake Material Laboratory of Institute of Physics, Shenzhen 523808, Guangdong, P.R. China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China. Electronic address:

Published: December 2021

Microbial fuel cell (MFC) is a sustainable technology that can convert waste to energy by harnessing the power of exoelectrogenic bacteria. However, the poor biocompatibility and low electrocatalytic activities of surface usually cause weak bacterial adhesion and low electron transfer efficiency, which seriously hampers the development of MFCs. Herein, a novel carbon nanotube supported cobalt phosphate (CNT/Co-Pi) electrode is fabricated by assembling CNTs on carbon cloth, followed by the electrodeposition of Co-Pi catalyst. The deposited amorphous Co-Pi thin film contains phosphate and the cobalt ions of multiple oxidation states. The hydrophilic phosphate can promote the adhesion of microorganisms on electrode. The strong conversion ability of multiple states of cobalt offers excellent electrocatalytic activity for the electron transfer across biotic/abiotic interface. Therefore, the highly conductive CNTs substrate, along with the Co-Pi catalyst, provide an effective electron transfer between the electrogenic bacteria and the electrode, which endows MFC high power densities up to 1200 mW m. Our work has demonstrated for the first time that CNT/Co-Pi catalyst can promote the interfacial electron transfer between electrogenic bacteria and electrode, and highlighted the application potentials of Co-Pi as an anode catalyst for the fabrication of high performance MFC anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2021.107941DOI Listing

Publication Analysis

Top Keywords

electron transfer
16
microbial fuel
8
fuel cell
8
supported cobalt
8
cobalt phosphate
8
co-pi catalyst
8
transfer electrogenic
8
electrogenic bacteria
8
bacteria electrode
8
catalyst
5

Similar Publications

Target-regulated AgS/FeOOH heterojunction activity: a direct label-free photoelectrochemical immunosensor.

Mikrochim Acta

January 2025

College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.

Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.

View Article and Find Full Text PDF

The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.

View Article and Find Full Text PDF

Dinitrogen Activation: A Novel Approach with P/B Intermolecular FLP.

J Phys Chem A

January 2025

School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.

This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.

View Article and Find Full Text PDF

Leaf Photosynthetic and Respiratory Thermal Acclimation in Terrestrial Plants in Response to Warming: A Global Synthesis.

Glob Chang Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.

Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.

View Article and Find Full Text PDF

Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!