Determination of chlorothalonil metabolites in soil and water samples.

J Chromatogr A

Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland. Electronic address:

Published: October 2021

Pesticide metabolites are frequently detected in groundwater at concentrations often exceeding those of their parent pesticides. A well-known example is the metabolites of chlorothalonil, a non-systematic, broad spectrum fungicide. Some of the chlorothalonil metabolites occur frequently and at elevated concentrations in groundwater, which is why the use of chlorothalonil was recently banned in the European Union. To estimate the long-term evolution of the concentration of the chlorothalonil metabolites in groundwater after this ban, it is important to know if metabolite residues in soil and unsaturated zone can affect the concentrations in groundwater. We developed and validated a method for the determination of 5 chlorothalonil metabolites in soil (R471811, R417888, SYN507900, SYN548580 and R611968), including those which are frequently detected in groundwater. The developed protocols, based on a solid phase extraction approach (for R471811, R417888, SYN507900, SYN548580) or a QuEChERS approach (for R611968) followed by UHPLC-MS/MS analysis, provided excellent sensitivity (LOQ of 0.5 µg/kg for all metabolites), precision (RSD<10 % at low, medium and high concentrations) and accuracy (84-115 %). In addition, we developed a simple but highly sensitive (LOQ of 5-10 ng/L) direct-injection method for the analysis of these 5 metabolites in water to compare their occurrence in soil and groundwater. The application of these methods to agricultural soil samples and groundwater samples showed that the detection frequency of the 5 chlorothalonil metabolites in soil and groundwater seems to be inversed and dependent on their sorption coefficient. The latter might control the amount of the chlorothalonil metabolites which is retained in the soil or which leaches towards groundwater. Our results provide insights to estimate the retention of the different chlorothalonil metabolites in soil and unsaturated zone and therefore, to assess the influence of the soil and unsaturated zone on the long-term concentration evolution of these metabolites in groundwater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.462507DOI Listing

Publication Analysis

Top Keywords

chlorothalonil metabolites
16
determination chlorothalonil
8
metabolites soil
8
frequently detected
8
detected groundwater
8
concentrations groundwater
8
groundwater developed
8
r471811 r417888
8
r417888 syn507900
8
syn507900 syn548580
8

Similar Publications

Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN.

View Article and Find Full Text PDF

Mutagenicity of the agriculture pesticide chlorothalonil assessed by somatic mutation and recombination test in Drosophila melanogaster.

Environ Mol Mutagen

October 2024

Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG)-Campus Carreiros, Rio Grande, Rio Grande do Sul, Brazil.

Chlorothalonil (CTL) is a pesticide widely used in Brazil, yet its mutagenic potential is not fully determined. Thus, we assessed the mutagenicity of CTL and its bioactivation metabolites using the somatic mutation and recombination test (SMART) in Drosophila melanogaster, by exposing individuals, with basal and high bioactivation capacities (standard and high bioactivation cross offspring, respectively), from third instar larval to early adult fly stages, to CTL-contaminated substrate (0.25, 1, 10 or 20 μM).

View Article and Find Full Text PDF

The mother-offspring transfer of chlorothalonil through human breast milk: A multi-city cross-sectional study.

Sci Total Environ

September 2024

NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; School of Public Health, Jinzhou Medical University, Jinzhou 121001, China. Electronic address:

4-Hydroxychlorothalonil (4-OH CHT), the main metabolite of chlorothalonil and the most widely used fungicide, has been frequently detected in human samples during monitoring. 4-OH CHT may exhibit higher toxicity and persistence in the environment compared to its prototype. In this study, a total of 540 paired serum and breast milk samples from pregnant women in three provinces in China were monitored for contaminant residues.

View Article and Find Full Text PDF

Rationale: Chlorothalonil (CHT), a broad-spectrum fungicide, has been employed widely to control foliar diseases, whereas with a major metabolite of polar 4-hydroxychlorothalonil (CHT-4-OH), only an acceptable nonpolar CHT residue is allowed by most countries. This study involves the method development for CHT residue in vegetables/fruits using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a novel modified discharge-adaptor (DA) interface.

Methods: CHT residue was analyzed using LC-MS/MS with DA interface (LC-DA-MS/MS), developed in our previous works.

View Article and Find Full Text PDF

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 μM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!