In western societies, the prevalence of type 2 diabetes (T2D) is related to the hygiene hypothesis, which implies that reduced exposure to infectious factors results in a loss of the immune stimulation necessary to form the immune system during development. In fact, it has been reported that parasites, such as Schistosoma, can improve or prevent the development of T2D, which may be related to the activity of immune cells, including regulatory T cells (Tregs). Hence, Schistosoma, Tregs, and T2D share a close relationship. Schistosoma infection and the molecules released can lead to an increase in Tregs, which play an important role in the suppression of T2D. In this review, we provide an overview of the role of Tregs in the response to Schistosoma infection and the protective mechanism of Schistosoma-related molecular products against T2D.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2021.106073DOI Listing

Publication Analysis

Top Keywords

regulatory cells
8
type diabetes
8
schistosoma infection
8
t2d
5
cells schistosoma-mediated
4
schistosoma-mediated protection
4
protection type
4
diabetes western
4
western societies
4
societies prevalence
4

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

A successful mitosis-to-meiosis transition in germ cells is essential for fertility in sexually reproducing organisms. In mice and humans, it is established that expression of STRA8 is critical for meiotic onset in both sexes. Here we show that BMP signalling is also essential, not for STRA8 induction but for correct meiotic progression in female mouse fetal germ cells.

View Article and Find Full Text PDF

Modular organization of enhancer network provides transcriptional robustness in mammalian development.

Nucleic Acids Res

January 2025

State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen, Fujian 361102, China.

Enhancer clusters, pivotal in mammalian development and diseases, can organize as enhancer networks to control cell identity and disease genes; however, the underlying mechanism remains largely unexplored. Here, we introduce eNet 2.0, a comprehensive tool for enhancer networks analysis during development and diseases based on single-cell chromatin accessibility data.

View Article and Find Full Text PDF

Mutations or homozygous deletions of MHC class II (MHC-II) genes are commonly found in B cell lymphomas that develop in immune-privileged sites and have been associated with patient survival. However, the mechanisms regulating MHC-II expression, particularly through genetic and epigenetic factors, are not yet fully understood. In this study, we identified a key signaling pathway involving the histone H2AK119 deubiquitinase BRCA1 associated protein 1 (BAP1), the interferon regulatory factor interferon regulatory factor 1 (IRF1), and the MHC-II transactivator class II transactivator (CIITA), which directly activates MHC-II gene expression.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!