New Findings: What is the topic of this review? Highland natives have undergone natural selection for genetic variants advantageous in adaptation to the hypobaric hypoxia experienced at high altitude. Why genes related to alcohol metabolism appear consistently selected for has not been greatly considered. We hypothesize that altitude-related changes in the gut microbiome offer one possible explanation. What advances does it highlight? Low intestinal oxygen tension might favour the production of ethanol through anaerobic fermentation by the gut microbiome. Subsequent increases in endogenous ethanol absorption could therefore provide a selection pressure for gene variants favouring its increased degradation, or perhaps reduced degradation if endogenously synthesized ethanol acts as a metabolic signalling molecule.
Abstract: Reduced tissue availability of oxygen results from ascent to high altitude, where atmospheric pressure, and thus the partial pressure of inspired oxygen, fall (hypobaric hypoxia). In humans, adaptation to such hypoxia is necessary for survival. These functional changes remain incompletely characterized, although metabolic adaptation (rather than simple increases in convective oxygen delivery) appears to play a fundamental role. Those populations that have remained native to high altitude have undergone natural selection for genetic variants associated with advantageous phenotypic traits. Interestingly, a consistent genetic signal has implicated alcohol metabolism in the human adaptive response to hypobaric hypoxia. The reasons for this remain unclear. One possibility is that increased alcohol synthesis occurs through fermentation by gut bacteria in response to enteric hypoxia. There is growing evidence that anaerobes capable of producing ethanol become increasingly prevalent with high-altitude exposure. We hypothesize that: (1) ascent to high altitude renders the gut luminal environment increasingly hypoxic, favouring (2) an increase in the population of enteric fermenting anaerobes, hence (3) the synthesis of alcohol which, through systemic absorption, leads to (4) selection pressure on genes relating to alcohol metabolism. In theory, alcohol could be viewed as a toxic product, leading to selection of gene variants favouring its metabolism. On the contrary, alcohol is a metabolic substrate that might be beneficial. This mechanism could also account for some of the interindividual differences of lowlanders in acclimatization to altitude. Future research should be aimed at determining any shifts to favour ethanol-producing anaerobes after ascent to altitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/EP089628 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China.
Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.
View Article and Find Full Text PDFBMC Genom Data
January 2025
School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Office 101E, Ottawa, Ontario, K1G 5Z3, Canada.
High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved in metabolism which provide a link between the internal (genetic) and external environments.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bone Joint, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256600, China.
This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!