Background: Abnormal morphology and function of neurons in the prefrontal cortex (PFC) are associated with cognitive deficits in rodent models of Alzheimer's disease (AD), particularly in cortical layer-5 pyramidal neurons that integrate inputs from different sources and project outputs to cortical or subcortical structures. Pyramidal neurons in layer-5 of the PFC can be classified as two subtypes depending on the inducibility of prominent hyperpolarization-activated cation currents (h-current). However, the differences in the neurophysiological alterations between these two subtypes in rodent models of AD remain poorly understood.
Objective: To investigate the neurophysiological alterations between two subtypes of pyramidal neurons in hAPP-J20 mice, a transgenic model for early onset AD.
Methods: The synaptic transmission and intrinsic excitability of pyramidal neurons were investigated using whole-cell patch recordings. The morphological complexity of pyramidal neurons was detected by biocytin labelling and subsequent Sholl analysis.
Results: We found reduced synaptic transmission and intrinsic excitability of the prominent h-current (PH) cells but not the non-PH cells in hAPP-J20 mice. Furthermore, the function of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels which mediated h-current was disrupted in the PH cells of hAPP-J20 mice. Sholl analysis revealed that PH cells had less dendritic intersections in hAPP-J20 mice comparing to control mice, implying that a lower morphological complexity might contribute to the reduced neuronal activity.
Conclusion: These results suggest that the PH cells in the medial PFC may be more vulnerable to degeneration in hAPP-J20 mice and play a sustainable role in frontal dysfunction in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-210585 | DOI Listing |
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Interdisciplinary Institute for Neuroscience (UMR 5297), University of Bordeaux, Bordeaux, Gironde, France.
This is a maximal intensity projection of CA1 pyramidal cell transfected with plasmid with the reporter GFP using single cell electroporation technique. In this particular case the organotypic slices were prepared from p5-7 pups in a tissue chopper (McIlwain). And maintained in MEM bases media with added glutamax with a change in 2 alternative dyas at 37°C and 5% CO for 4 days in-vitro (DIV) before electroporating with a glass pipette of 7-10mΩ resistance by applying 4 square pulses of -ve voltage of -2.
View Article and Find Full Text PDFNeurochem Res
January 2025
Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cornell University, Ithaca, NY, USA.
Background: Spatial disorientation is an early symptom of Alzheimer's disease (AD). The hippocampus creates a cognitive map, wherein cells form firing fields in specific locations within an environment, termed place cells. Critically, place cells remain stable across visits to an environment, but change their firing rate or field location in a different environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!