Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults, and hippocampal sclerosis (HS) is a frequent histopathological feature in patients with MTLE. Pharmacoresistance is present in at least one-third of patients with MTLE with HS (MTLE+HS). Several hypotheses have been proposed to explain the mechanisms of pharmacoresistance in epilepsy, including the effect of genetic and molecular factors. In recent years, the increased knowledge generated by high-throughput omic technologies has significantly improved the power of molecular genetic studies to discover new mechanisms leading to disease and response to treatment. In this review, we present and discuss the contribution of different omic modalities to understand the basic mechanisms determining pharmacoresistance in patients with MTLE+HS. We provide an overview and a critical discussion of the findings, limitations, new approaches, and future directions of these studies to improve the understanding of pharmacoresistance in MTLE+HS. However, it is important to point out that, as with other complex traits, pharmacoresistance to anti-seizure medications is likely a multifactorial condition in which gene-gene and gene-environment interactions play an important role. Thus, studies using multidimensional approaches are more likely to unravel these intricate biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340306 | PMC |
http://dx.doi.org/10.1002/epi4.12536 | DOI Listing |
Front Neurol
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.
Objective: To observe and measure the morphological and temporal evolutionary features of the hypersynchronous (HYP) pattern in the mesial temporal seizure.
Methods: The HYP patterns during preictal and interictal states of 16 mesial temporal epileptic patients were analyzed. The wave components of the HYP transients were firstly observed and measured.
Neurochem Res
January 2025
Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland.
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Epilepsy is a common neurological disease that is treated with medications; however, patients with drug-resistant epilepsy, commonly intractable temporal lobe epilepsy, tend to have better control with surgical treatment. While the mainstay of surgical treatment is anterior temporal lobectomy, it carries risk of potential adverse effects hence minimally invasive techniques are now being used as an alternative to open surgery. This systematic review and meta-analysis compare the efficacy and safety of three of the most used techniques: laser interstitial thermal therapy (LITT), radiofrequency ablation (RFA) and stereotactic radiosurgery (SRS).
View Article and Find Full Text PDFEpilepsia Open
January 2025
Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Musicogenic epilepsy (ME) is characterized by seizures triggered by music. The epileptogenic focus in this rare reflex epilepsy is often in the temporal lobe, although the precise localization is still unclear. A correlation between ME and the presence of GAD65 antibodies indicates a potential immunological pathogenic mechanism.
View Article and Find Full Text PDFFront Syst Neurosci
January 2025
Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
Introduction: Evidence increasingly shows that facial emotion recognition (FER) is impaired in refractory mesial temporal lobe epilepsy (rMTLE), especially in patients with a right focus. This study explores FER in both mild (mMTLE) and refractory forms, examining the influence of epileptic focus lateralization on FER.
Methods: 50 MTLE patients, categorized by epilepsy severity and focus lateralization, were compared with healthy controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!