Our previous study revealed that N-acetyl-l-cysteine (NAC) could enhance the secretion of recombinant proteins by Pichia pastoris, but the corresponding molecular mechanisms are still unclear. In the present study, we explored whether other thiols have a similar action on the secretion of recombinant human serum albumin and porcine follicle-stimulating hormone fusion protein (HSA-pFSHβ), to reveal the mechanism of NAC on HSA-pFSHβ secretion. Transcriptome analysis showed that genes involved in oxidoreductase activity and oxidation-reduction process were upregulated in cells supplemented with NAC. The other three thiol-reducing regents including dimercaptopropanol (DT), thioglycolic acid, and mercaptolactic acid could improve HSA-pFSHβ production in the culture supernatant. Among them, only DT had similar effect as NAC on HSA-pFSHβ secretion and the increase of GSH content. Moreover, 1-20 mM GSH, 1-10 mM cysteine, or 1-20 mM N-acetyl-d-cysteine supplementation could improve the secretion of HSA-pFSHβ. Furthermore, 0.4-3.2 mM ethacrynic acid, rather than 1-16 mM BSO could inhibit the effect of NAC on the production of HSA-pFSHβ. These results indicated that NAC improved the secretion of HSA-pFSHβ by increasing the intracellular GSH content through its thiol activity rather than as a precursor for GSH synthesis. In conclusion, our results demonstrate, for the first time, that the secretion of recombinant HSA-pFSHβ in Pichia pastoris could be improved through thiol-reducing agent supplementation, and the mechanism of the effect NAC has on HSA-pFSHβ secretion is associated with improving the intracellular GSH content.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.3668DOI Listing

Publication Analysis

Top Keywords

pichia pastoris
12
secretion recombinant
12
nac hsa-pfshβ
12
hsa-pfshβ secretion
12
gsh content
12
secretion
9
hsa-pfshβ
9
porcine follicle-stimulating
8
follicle-stimulating hormone
8
mechanism nac
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!