Objective: Remifentanil (RF) is a potent short-acting μ-opioid receptor agonist. Although preferred for its unique pharmacokinetics, the clinical use may be limited by hyperalgesia. Preclinical studies have shown a potential role of microglia on the development of hyperalgesia, with limited and conflicting evidence on RF. Considering the role of microglia in the initiation and maintenance of brain inflammation and their different responses among species, we aimed at characterizing RF effects on human adult microglia in vitro.
Materials And Methods: RF was tested at clinically relevant concentrations on the human microglial C20 cell line. Expression and release of interleukin-6 (IL-6) and brain derived neurotrophic factor (BDNF) were assessed under basal and inflammatory conditions.
Results: The expression and secretion of IL-6 significantly increased in C20 cells in response to pro-inflammatory cytokines. RF did not modify this response neither under basal nor under inflammatory conditions. No toxicity due to RF was detected. The drug displayed a modest stimulatory effect on the production of BDNF.
Conclusions: Although RF does not exert direct pro-inflammatory actions on human adult microglia, its effects on BDNF, a crucial mediator of pain transmission, suggest a possible role on neuroinflammation and pain perception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.26355/eurrev_202108_26547 | DOI Listing |
ACS Chem Neurosci
January 2025
Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China.
Patients with spinal cord injury (SCI) may develop depression, which can affect their rehabilitation. However, the underlying mechanism of depression in SCI patients remains unclear. Previous studies have revealed increased p38 MAPK phosphorylation in the rat hippocampus after SCI, accompanied by depression-like behaviors.
View Article and Find Full Text PDFGlia
January 2025
Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.
Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).
Alzheimers Res Ther
January 2025
Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.
Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!