Bidirectional doping of two-dimensional thin-layer transition metal dichalcogenides using soft ammonia plasma.

Nanoscale

Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.

Published: September 2021

Because of suitable band gap and high mobility, two-dimensional transition metal dichalcogenide (TMD) materials are promising in future microelectronic devices. However, controllable p-type and n-type doping of TMDs is still a challenge. Herein, we develop a soft plasma doping concept and demonstrate both n-type and p-type doping for TMDs including MoS and WS through adjusting the plasma working parameters. In particular, p-type doping of MoS can be realized when the radio frequency (RF) power is relatively small and the processing time is short: the off-state current increases from ∼10 A to ∼10 A, the threshold voltage is positively shifted from -26.2 V to 8.3 V, and the mobility increases from 7.05 cm V s to 16.52 cm V s. Under a relatively large RF power and long processing time, n-type doping was realized for MoS: the threshold voltage was negatively shifted from 6.8 V to -13.3 V and the mobility is reduced from 10.32 cm V s to 3.2 cm V s. For the former, suitable plasma treatment can promote the substitution of N elements for S vacancies and lead to p-type doping, thus reducing the defect density and increasing the mobility value. For the latter, due to excessive plasma treatment, more S vacancies will be produced, leading to heavier n-type doping as well as a decrease in mobility. We confirm the results by systematically analyzing the optical, compositional, thickness and structural characteristics of the samples before and after such soft plasma treatments Raman, photoluminescence (PL), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) measurements. Due to its nondestructive and expandable nature and compatibility with the current microelectronics industry, this potentially generic method may be used as a reliable technology for the development of diverse and functional TMD-based devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr03917bDOI Listing

Publication Analysis

Top Keywords

n-type doping
12
p-type doping
12
transition metal
8
doping tmds
8
soft plasma
8
processing time
8
threshold voltage
8
plasma treatment
8
doping
7
plasma
6

Similar Publications

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Realizing high power factor and thermoelectric performance in band engineered AgSbTe.

Nat Commun

January 2025

Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.

AgSbTe is a promising p-type thermoelectric material operating in the mid-temperature regime. To further enhance its thermoelectric performance, previous research has mainly focused on reducing lattice thermal conductivity by forming ordered nanoscale domains for instance. However, the relatively low power factor is the main limitation affecting the power density of AgSbTe-based thermoelectric devices.

View Article and Find Full Text PDF

This work presents a density functional theory (DFT) study of substitutional and adsorption-based halogen (I or F) doping of WS-based transistors to enhance their contact properties. Substitutional doping of the WS monolayer with halogens results in -type behavior, while halogen adsorption on the surface of the WS monolayer induces -type behavior. This is attributed to differing directions of charge flow, as supported by the Mulliken analysis.

View Article and Find Full Text PDF

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF

Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!