LncRNA GAS5 protects against TGF-β-induced renal fibrosis via the Smad3/miRNA-142-5p axis.

Am J Physiol Renal Physiol

Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.

Published: October 2021

Increasing evidence shows that long noncoding RNAs (lncRNAs) play an important role in kidney disease. In this study, we investigated the role of the lncRNA growth arrest-specific 5 (GAS5) in the pathogenesis of renal fibrosis. We found that GAS5 was markedly decreased in the fibrotic kidney of a unilateral ureteral obstructive nephropathy mouse model. In addition, GAS5 was expressed in mouse tubular epithelial cells (mTECs) and interstitial fibroblasts in normal renal tissue and was especially highly expressed in the cytoplasm. In vitro experiments showed that GAS5 was downregulated by transforming growth factor-β1 (TGF-β1) in a dose- and time-dependent manner. Overexpression of GAS5 blocked TGF-β1-induced collagen type I and fibronectin expression and vice versa. Mechanistic experiments revealed that Smad3 but not Smad2 drove the regulation of GAS5. More importantly, GAS5 interacted with miR-142-5p and was involved in the renoprotective effect by participating in the competing endogenous RNA network. Finally, we also found that knockdown of GAS5 promoted TGF-β1-induced mouse tubular epithelial cell apoptosis via the Smad3 pathway. Taken together, our results uncovered a lncRNA/miRNA competing endogenous RNA network-based mechanism that modulates extracellular matrix formation and cell apoptosis via the Smad3 pathway. In this work, we mainly discuss long noncoding RNA growth arrest-specific 5 (GAS5), acting in a renoprotective role via the Smad3/miRNA-142-5p axis, that modulates extracellular matrix formation and cell apoptosis. Overexpression of GAS5 effectively blocked renal fibrosis in vitro. This study reveals that GAS5 may represent as a novel and precision therapeutic target for alleviating renal fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00085.2021DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
16
cell apoptosis
12
gas5
11
smad3/mirna-142-5p axis
8
long noncoding
8
growth arrest-specific
8
arrest-specific gas5
8
mouse tubular
8
tubular epithelial
8
overexpression gas5
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!