Accessing enormous uncultivated microorganisms (microbial dark matter) in various Earth environments requires accurate, nondestructive classification, and molecular understanding of the microorganisms in and at the single-cell level. Here we demonstrate a combined approach of random forest (RF) machine learning and single-cell Raman microspectroscopy for accurate classification of phylogenetically diverse prokaryotes (three bacterial and three archaeal species from different phyla). Our RF classifier achieved a 98.8 ± 1.9% classification accuracy among the six species in pure populations and 98.4% for three species in an artificially mixed population. Feature importance scores against each wavenumber reveal that the presence of carotenoids and structure of membrane lipids play key roles in distinguishing the prokaryotic species. We also find unique Raman markers for an ammonia-oxidizing archaeon. Our approach with moderate data pretreatment and intuitive visualization of feature importance is easy to use for non-spectroscopists, and thus offers microbiologists a new single-cell tool for shedding light on microbial dark matter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397914PMC
http://dx.doi.org/10.1016/j.isci.2021.102975DOI Listing

Publication Analysis

Top Keywords

single-cell raman
8
nondestructive classification
8
microbial dark
8
dark matter
8
machine learning-assisted
4
single-cell
4
learning-assisted single-cell
4
raman fingerprinting
4
fingerprinting nondestructive
4
classification
4

Similar Publications

In this work, we investigated individual bacteria belonging to strains of the Beijing family with different drug sensitivity (sensitive, multi and extensive drug-resistant) by surface-enhanced Raman spectroscopy (SERS) in the fingerprint region. The latter is focused on the spectral bands, which correspond to a set of glutathione bands and DNA methylation patterns revealed due to 5-methylcytosine spectral biomarkers. It is shown that these spectral features can be correlated with drug sensitivity and DNA methylation.

View Article and Find Full Text PDF

Analysis of Drug Molecules in Living Cells.

Crit Rev Anal Chem

January 2025

Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK.

Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine.

View Article and Find Full Text PDF

Background: An accurate diagnosis of septic versus reactive or autoimmune arthritis remains clinically challenging. A multi-omics strategy comprising metagenomic and proteomic technologies were undertaken for children diagnosed with presumed septic arthritis to advance clinical diagnoses and care for affected individuals.

Methods: Twelve children with suspected septic arthritis were prospectively enrolled to compare standard of care tests with a rapid multi-omics approach.

View Article and Find Full Text PDF

IFN-γ reprograms cardiac microvascular endothelial cells to mediate doxorubicin transport and influences the sensitivity of mice to doxorubicin-induced cardiotoxicity.

Exp Mol Med

January 2025

Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, P. R. China.

Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive.

View Article and Find Full Text PDF

Phosphorus recovery through enhanced biological phosphorus removal (EBPR) processes from agricultural wastes holds promise in mitigating the impending global P shortage. However, the complex nutrient forms and the microbial augments, expected to exert a profound impact on crop rhizomicrobiome and thus crop health, remained unexplored. In this study, we investigated the impacts of EBPR biosolids on crops growth and rhizomicrobiome in comparison to chemical fertilizer and Vermont manure compost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!