Objective: To best meet our point-of-care research (POC-R) needs, we developed ProjectFlow, a configurable, clinical research workflow management application. In this article, we describe ProjectFlow and how it is used to manage study processes for the Diuretic Comparison Project (DCP) and the Research Precision Oncology Program (RePOP).
Materials And Methods: The Veterans Health Administration (VHA) is the largest integrated health care system in the United States. ProjectFlow is a flexible web-based workflow management tool specifically created to facilitate conduct of our clinical research initiatives within the VHA. The application was developed using the Grails web framework and allows researchers to create custom workflows using Business Process Model and Notation.
Results: As of January 2021, ProjectFlow has facilitated management of study recruitment, enrollment, randomization, and drug orders for over 10 000 patients for the DCP clinical trial. It has also helped us evaluate over 3800 patients for recruitment and enroll over 370 of them into RePOP for use in data sharing partnerships and predictive analytics aimed at optimizing cancer treatment in the VHA.
Discussion: The POC-R study design embeds research processes within day-to-day clinical care and leverages longitudinal electronic health record (EHR) data for study recruitment, monitoring, and outcome reporting. Software that allows flexibility in study workflow creation and integrates with enterprise EHR systems is critical to the success of POC-R.
Conclusions: We developed a flexible web-based informatics solution called ProjectFlow that supports custom research workflow configuration and has ability to integrate data from existing VHA EHR systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411372 | PMC |
http://dx.doi.org/10.1093/jamiaopen/ooab074 | DOI Listing |
PLOS Glob Public Health
January 2025
Center for Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
Humanitarian medical response to natural and human-made disasters can be complicated by high clinician, staff, and patient turnover. While electronic medical records are being scaled up globally, their use remains limited in humanitarian response settings. The Fast Electronic Medical Record (fEMR) system is an open-source electronic health record system specifically designed for use in resource-limited settings and humanitarian crises.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Bennu Climate, Inc. and Symbolic Systems Program, Stanford University, Stanford, California 94305, USA.
The Linac Coherent Light Source (LCLS) is the world's first x-ray free electron laser. It is a scientific user facility operated by the SLAC National Accelerator Laboratory, at Stanford, for the U.S.
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2025
Seven Past Nine GmbH, Rebacker 68, 79650 Schopfheim, Germany.
Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality (how was the data generated, using which protocol with which controls), as part of good research output management, is necessary to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and Re-usable) data and the everyday practice of experimental researchers.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
Background: Air pollution is a major public health threat globally. Health studies, regulatory actions, and policy evaluations typically rely on air pollutant concentrations from single exposure models, assuming accurate estimations and ignoring related uncertainty. We developed a modeling framework, bneR, to apply the Bayesian Nonparametric Ensemble (BNE) prediction model that combines existing exposure models as inputs to provide air pollution estimates and their spatio-temporal uncertainty.
View Article and Find Full Text PDFJ Particip Med
January 2025
Department of Ambulatory Care, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland.
Background: Health authorities worldwide have invested in digital technologies to establish robust information exchange systems for improving the safety and efficiency of medication management. Nevertheless, inaccurate medication lists and information gaps are common, particularly during care transitions, leading to avoidable harm, inefficiencies, and increased costs. Besides fragmented health care processes, the inconsistent incorporation of patient-driven changes contributes to these problems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!