, and , collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415548PMC
http://dx.doi.org/10.3389/fmolb.2021.706650DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
oxidative stress
8
oncogenic ras
8
cancer cells
8
cancer
6
metabolism regulates
4
regulates oxidative
4
stress ferroptosis
4
ferroptosis ras-driven
4
ras-driven cancers
4

Similar Publications

Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane.

View Article and Find Full Text PDF

Rice sheath blight (RSB), caused by the pathogenic fungus , poses a significant threat to global food security. The defense mechanisms employed by rice against RSB are not well understood. In our study, we analyzed the interactions between rice and by comparing the phenotypic changes, ROS content, and metabolite variations in both tolerant and susceptible rice varieties during the early stages of fungal infection.

View Article and Find Full Text PDF

Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets.

Toxics

December 2024

West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.

Acute pancreatitis (AP), induced by tetracycline, a widely used antibiotic, poses significant clinical and toxicological challenges, yet its molecular mechanisms remain unclear. This study aims to promote drug toxicology strategies for the effective investigation of the putative toxicity and potential molecular mechanisms of antibiotic drugs through the study of tetracycline in AP. Using the SwissTargetPrediction, SEA Search, Super-PRED, GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Database (TTD), we identified 259 potential targets associated with tetracycline exposure and AP.

View Article and Find Full Text PDF

The Effects of Novel Co-Amorphous Naringenin and Fisetin Compounds on a Diet-Induced Obesity Murine Model.

Nutrients

December 2024

Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico.

Background/objective: In recent studies, it has been shown that dietary bioactive compounds can produce health benefits; however, it is not known whether an improvement in solubility can enhance their biological effects. Thus, the aim of this work was to study whether co-amorphous (CoA) naringenin or fisetin with enhanced solubility modify glucose and lipid metabolism, thermogenic capacity and gut microbiota in mice fed a high-fat, high-sucrose (HFSD) diet.

Methods: Mice were fed with an HFSD with or without CoA-naringenin or CoA-fisetin for 3 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!