Buch-Ham., an exotic mangrove species with antidiabetic, antibacterial, and antioxidant capacities, mainly distributes in the southeast coastal areas in China. The present work investigated the protective effects of leaves and branches extraction (SAL) on hyperuricemia (HUA) in mice. Potassium oxonate (PO) and hypoxanthine (HX) were used to establish the HUA model by challenge for consecutive 7 days. Results revealed that SAL inhibited the increases in kidney weight and index compared to the vehicle group. Meanwhile, SAL significantly decreased the levels of uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN) in serum. Additionally, SAL inhibited the activity of xanthine oxidase (XOD) in the liver. SAL ameliorated PO- and HX-induced histopathological changes. Moreover, it regulated oxidative stress markers including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) activity, and glutathione (GSH) content. Also, SAL inhibited the increases in renal levels of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), monocyte chemotactic protein 1 (MCP-1), and transforming growth factor-β (TGF-β). SAL remarkably reduced suppressor of cytokine signaling 3 (SOCS3), Janus kinase 2 (JAK2), and subsequent phosphorylation of signal transducer and activator of transcription 3 (STAT3) expression. In addition, SAL inhibited the activation of nuclear factor kappa-B (NF-κB) in the kidney. Furthermore, SAL protected against HUA by regulating renal UA transporters of organic anion transporter (OAT1), urate reabsorption transporter 1 (URAT1), and glucose transporter 9 (GLUT9). These findings suggested that SAL ameliorated HUA by inhibiting the production of uric acid and enhancing renal urate excretion, which are related to oxidative stress and inflammation, and the possible molecular mechanisms include its ability to inhibit the JAK/STAT signaling pathway. Thus, SAL might be developed into a promising agent for HUA treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415165PMC
http://dx.doi.org/10.3389/fphar.2021.698219DOI Listing

Publication Analysis

Top Keywords

sal inhibited
16
uric acid
12
sal
11
leaves branches
8
regulating renal
8
jak/stat signaling
8
signaling pathway
8
inhibited increases
8
sal ameliorated
8
oxidative stress
8

Similar Publications

Survival quality of glioblastoma (GBM) patients remains undesirable despite the aggressive multimodal treatment methods implemented, which are strongly associated with tumor recurrence after surgical resection. Self-renewal and strong tumourigenic capacity of glioblastoma stem cells (GSCs) at the narrow margin of the incision are essential factors driving tumor secondary strikes. Currently, the challenges in treating postoperative residual GSCs are mainly due to the lack of materials for incision and GSCs targeting.

View Article and Find Full Text PDF

Peptide amphiphiles alleviate myocardial endoplasmic reticulum stress to enhance cardiomyocyte-macrophage communication and promote macrophage M2 polarization.

J Control Release

December 2024

Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Myocardial ischemia-reperfusion (I/R) injury represents a significant clinical challenge with limited therapeutic options. Single-cell RNA sequencing and bioinformatics analyses have revealed complex cellular interactions within cardiac tissue, highlighting the crucial role of cardiomyocytes in intercellular communication. During I/R injury, cardiomyocytes experience severe endoplasmic reticulum (ER) stress, leading to detrimental intercellular communication that affects surrounding cells, particularly promoting the transformation of macrophages toward a pro-inflammatory phenotype.

View Article and Find Full Text PDF

[Salidroside alleviates high glucose and ethanol-induced pyroptosis in insulinoma cells].

Zhongguo Zhong Yao Za Zhi

November 2024

School of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000, China Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine Shiyan 442000, China Department of Pharmacy, Taihe Hospital, Hubei University of Medicine Shiyan 442000, China.

This study established a pyroptosis injury model by stimulating insulinoma cells(INS-1) of rats with high glucose(HG) and observed the impact of additional ethanol(ET) exposure on cell pyroptosis, as well as the intervention effect of salidroside(SAL). INS-1 cells were cultured and divided into a normal control group(NG), an HG group, an HG + ET(100 mmol·L~(-1)) group, and an HG + ET + SAL(1-100 μmol·L~(-1)) group. After 72 hours of treatment, cell viability was assessed using the cell counting kit-8(CCK-8) assay.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons in the substantia nigra pars compacta triggered by the accumulation of amyloid aggregates of α-synuclein protein. This study investigates the potential of Salvianolic Acid B (SalB), a water-soluble polyphenol derived from Salvia miltiorrhiza Bunge, in modulating the aggregation of the A53T mutant of α-synuclein (A53T Syn). This mutation is associated with rapid aggregation and a higher rate of protofibril formation in early-onset familial PD.

View Article and Find Full Text PDF

Background: The androgen receptor (AR), a ligand-dependent transcription factor, plays a key role in regulating prostate cancer (PCa) growth. The novel bipolar androgen therapy (BAT) uses supraphysiological androgen levels (SAL) that suppresses growth of PCa cells and induces cellular senescence functioning as a tumor suppressive mechanism. The role of long non-coding RNAs (lncRNAs) in the regulation of SAL-mediated senescence remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!